Method / Parameters: ¹⁴C primary production **Research Vessel** :

• Pourquoi Pas?

Document authors and contact info:

Thierry Moutin (thierry.moutin@mio.osupytheas.fr)

Brief description of protocol used during APERO :

Primary production has been be quantified according to the experimental protocol described in Moutin & Raimbault (2002). Samples were be obtained with 12-1 Niskin bottles with silicone rubber closures and tubing that had been carefully checked to avoid introducing toxic metals during sampling. Up to 9 depths of sampling were chosen according to the incident light profiles measured day n°1 on each station. Each sample (320-ml polycarbonate bottle, 3 light and one dark sample per depth) was collected before sunrise, inoculated with 250 µl of the ¹⁴C working solution^a just before sunrise, and then incubated in deck incubators equipped with adapted screens. After 24h, the samples were filtered on GF/F filters to measure net absorption ($A_N mgC m^{-3}$). Filters were immediately covered with 500 µl of HCl 0.5 M and store for counting at the laboratory. Each day, 3 samples were filtered immediately after inoculation for to determination, and 250 µl of sample were taken at random from 3 bottles and stored with 250 µl of ethanolamine (Sigma-Aldrich 407267) to determine the quantity of added tracer (Qi). At laboratory, samples were dried during 12 h at 60°C, 10 ml of ULTIMAGOLD-MV (Packard) were added to the filters and dpm were counted after 24h with a Hidex 300 L liquid scintillation analyser.

Calibration:

The scintillation counter was calibrated with ¹⁴C standards to convert cpm in dpm

Uncertainties and quality control concerns:

Triplicates were done at each depth for light samples Subsamples are regularly done to verify the concentration of ¹⁴C- bicarbonate working solution.

Data products originating with this method:

Net absorption A_N for dark and light bottles was calculated from :

 $A_{\rm N}~(mgC~m^{-3})$ = (dpm-dpm_{(to)})/(dpm_{(Qi)}*1280) * DIC^{\rm b} where DIC is the dissolved inorganic carbon concentration

Primary production rates PP (24h from dawn-to-dawn) were obtained from PP (mgC $m^{-3} j^{-1}$) = AN_{light} - AN_{black}

Integrated primary production IPP (mg m⁻² d⁻¹) was calculated with trapezium method assuming (1) that subsurface (about 5 m) rates are identical to surface rates (not measured) and (2) that rates are zero at 20 m below the deepest sampled depth.

The integrated gross primary production rates IGPP (mg m⁻² d⁻¹) was calculated from light samples A_N (mgC m⁻³ j⁻¹) according to Moutin et al. (1999)

a Working solution : NaH¹⁴CO₃ (5 mCi, 50-60 mCi/mmole, Perkin Elmer (NEC086H005MC) diluted in a Na₂CO₃ (Aldrich 20,442-0) solution stored in sealed 15 ml glass flasks.

b DIC = 25 000 mgC m⁻³ will be use in absence of DIC measurements or a satisfactory salinity/DIC relationship.

Key method references:

Moutin, T., and P. Raimbault. 2002. Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996. MATER Special Issue. Ournal. of Mar. Syst. 33-34, 273-288.

Moutin, T., P. Raimbault & J.C. Poggiale. 1999. Production primaire dans les eaux de surface de la Méditerranée occidentale : Calcul de la production journalière. . C. R. Acad. Sci. Paris, Sciences de la vie. 322 : 651-659.