

Joint Assembly IAHS - IAPSO - IASPEI Gothenburg Sweden 22-26 July 2013

MERMAIDs:

First observations of seismic *P* waves with freely floating submarine robots

by Alexey Sukhovich¹ with Jean-Olivier Irisson³, Sébastien Bonnieux², Frederik J. Simons⁴, Anthony Ogé², Yann Hello², Guust Nolet²,

 (1) Laboratoire Domaines Océaniques, Institut Universitaire Européen de la Mer, University of Brest, Brest, France
 (2) Géoazur, Sophia-Antipolis, France
 (3) Observatoire Océanologique, Villefranche-sur-Mer, France
 (4) Dept. Geosciences, Princeton University, Princeton NJ, USA

Motivation

CURRENT PROBLEM

A lack of seismic data from **oceanic** domains

• a significant impediment to the global seismic tomography

• especially severe for southern hemisphere which contains most of the known plumes

RAY DENSITY (adopted from Montelli *et al.*, *GJI* **158**, 637, 2004)

2125 km

1525 km

925 km

Seismic data collection at sea

Ocean Bottom Seismometers (OBS)

(https://geoazur.oca.eu/spip.php?article62)

Moored Hydrophones

(adopted from *http://www.pmel.noaa.gov/vents/acoustics/haru_system.html*)

DRAWBACK : high installation&recuperation costs preclude ocean coverage dense enough for seismic tomography

MERMAID

SOLUTION : new detecting instrument MERMAID

Mobile Earthquake Recording in Marine Areas by Independent Divers

- freely drifting underwater robot of variable buoyancy which can dive to and remain at certain depth
- records acoustic waves generated by seismic events and transmits the recorded data via satellite
- Advantages : LOW COST and MOBILITY

MERMAID first prototype

Pioneering experiments by Simons *et al.** in 2003-2007:

- Sounding Oceanographic Lagrangian Observer (SOLO) equipped with a hydrophone and recording system
- 120-hour-long continuous records gathered at the depth of 700 m offshore San-Diego
- several acoustic signals generated by the seismic events are detected, among which a teleseismic one:

2003-11-05, LAT = 5.07, LON=-77.69, 5.7mb, NEAR WEST COAST OF COLOMBIA (Simons et al., 2009)

MERMAID prototype (Simons et al., 2009)

* Simons *et al.*, On the potential of recording earthquakes for global seismic tomography by low-cost autonomous instruments in the oceans, JGR, 2009

MERMAID's typical mission

- descent to a programmed depth
- *continuous* monitoring of the pressure variation and on-board analysis of the detected signal
- *rapid* ascent if a teleseismic P wave detected \rightarrow data transmission and MERMAID localization (the place of detection is as important as the arrival time!)
- return to the monitoring state if the signal is not a teleseismic *P* wave

(adopted from www.argo.ucsd.edu)

Note that ascents and descents are two phases with major power consumption

Signal Detection (STA/LTA)

Detection of an arriving signal is ensured by continuous calculation of the ratio of the short-term to long-term moving averages (STA/LTA algorithm)*

For a given record S_i

*Allen, R. V. (1978), Automatic earthquake recognition and timing from single traces, Bull. Seismol. Soc. Am.

Signal Detection (STA/LTA)

Detection of an arriving signal is ensured by continuous calculation of the ratio of the short-term to long-term **moving** averages (**STA/LTA** algorithm):

Acoustic contaminants

ACOUSTIC CONTAMINANTS (for us) MARINE ANIMALS

SHIPS

EXPLORATION CAMPAIGNS

T WAVES

ETC ...

Need an AUTOMATIC DISCRIMINATION of STA/LTA detected signals

STATISTICAL APPROACH

1. Analyze as many signals of the same origin as possible

2. Compare an unknown signal with the statistical model

describes how *on average* the total power of the signals of this type is distributed among different frequency bands

STATISTICAL MODEL

Recognition criterion C

(quantifies the probability for the signal to belong to the model)

The signal belongs to the model when $C > C_0$

*Sukhovich *et al.*, GRL **38**, L18605, 2011

Evaluation of statistical models

Continuous records of 7 Ocean Bottom Hydrophones (OBHs) recorded during 6-months-long "Grosmarin" experiment* conducted in Ligurian Sea (Mediterranean):

STUDY AREA OF GROSMARIN EXPERIMENT

* Dessa et al., Bull. Soc. Geol. Fr., 182(4), 305–321 (2011)

Auto-Discrimination: Grosmarin data

P WAVES

Auto-Discrimination: Grosmarin data

P WAVES

Auto-Discrimination: Grosmarin data

P WAVES

With $C_0 = 0.15$ and $SNR_0 = 2.25$: 94% of *P* waves are identified correctly

Discrimination: Haiti data

Independent data set by two OBHs from 4-month-long experiment at large of Haiti

Ongoing missions

4 MERMAIDS

MEDITERANEAN

SOUTH INDIAN OCEAN

2 MERMAIDs

Mission start: End of December 2012

Total number of events detected by July 19, 2013: 27

Sample seismograms

Delta – Magnitude – Signal Amplitude

Delta – Magnitude - SNR

Ongoing mission: South Indian ocean

2 MERMAIDs

POSITIONS AT THE SURFACE March 2013 – June 2013

Mission start: beginning of March 2013 Number of events detected by July 19, 2013: **5**

Ongoing mission: South Indian ocean

TIME	DELTA	DEPTH	MAG TYPE	REGION
2013-05-24 05:44:49	113.60	608.90	8.4 MW	SEA OF OKHOTSK
2013-04-16 10:44:20	62.10	82.00	7.7 MW	SOUTHWESTERN PAKISTAN
2013-06-15 17:34:29	149.40	44.80	6.3 MW	NEAR COAST OF NICARAGUA
2013-07-07 18:35:30	82.53	386.30	7.3 MW	NEW IRELAND REGION, P.N.G.
2013-07-15 14:03:42	69.93	26.80	7.3 MW	SOUTH SANDWICH ISLANDS REGION

South Indian ocean: Seismograms

Ongoing mission: South Indian ocean

With $C_0 = 0.15$ and $SNR_0 = 2.25$: 5 distinct events are identified correctly 15 false positives

Ongoing mission: South Indian ocean

Delta – Magnitude - SNR

Ambient noise properties

- at lower frequencies (< 0.4 Hz) ambient noise field in stronger in the Indian ocean - at higher frequencies (> 0.4 Hz) ambient noise field is stronger in the Mediterranean

Conclusions

- MERMAID robots capable to detect acoustic signals generated by seismic *P* waves are developed
- signal discrimination is based on the statistical analysis of the distribution of the signal's total power among different frequency bands
- 23 events recorded in Mediterranean during 6 months
- 5 events recorded in the Indian ocean during 3 months
- Ambient noise spectral level in the Indian ocean is different from that in the Mediterranean and is dominated by lower frequencies (< 0.4 Hz) \rightarrow the future work includes the adjustment of the detection parameters to the noise conditions in the Indian ocean

THANK YOU FOR YOUR ATTENTION!

Wavelet transform and power distribution

Signals are analyzed with **WAVELET TRANSFORM :** projection of a function f(t) onto a space defined by wavelet functions $\psi(t)$

$$\gamma(s_j, \tau_i) = \int f(t) \psi^*(\frac{t-\tau_i}{s_j}) dt$$

S_i - scale frequency band

TOTAL SIGNAL BANDWIDTH (F_{s} – sampling frequency)

Wavelet transform

The DWT is visualized by a **SCALOGRAM** - absolute values of all wavelet transform coefficients $\gamma(s, \tau)$ as a function of *s* and τ

STATISTICAL APPROACH

Compare signal's POWER DISTRIBUTION among wavelet scales with a STATISTICAL MODEL for signals of given origin \square Discrimination criterion *C* (measure of probability for a signal to belong to the model)

POWER DISTRIBUTION

Comparison of signal's scale averages $\tilde{S}_1^0, \dots, \tilde{S}_K^0$ with the statistical model: • find proportion p_k of the model's \tilde{S}_k values more extreme than the corresponding signal's value \tilde{S}_k^0

(as a reference point we are using median of the distribution \tilde{S}_k^M)

All proportions are combined in a weighted average to get a single discrimination criterion C:

$$C = \sum_{k} D_{k} p_{k} / \sum_{k} D_{k}$$

Weights D_k are Kolmogorov-Smirnov statistics. For any two distributions Kolmogorov-Smirnov test gives:

All proportions are combined in a weighted average to get a single discrimination criterion C:

$$C = \sum_{k} D_{k} p_{k} / \sum_{k} D_{k}$$

• as we are interested in P waves, weights D_k are obtained by comparing distributions of a P wave model (black) with the distributions of **ALL OTHER** signals (gray) combined

Signal-to-noise ratio (SNR)

In addition to *C* we calculate *SNR* of a detected signal defined as ratio of DWT coefficients of the signal and the ambient noise preceding the signal :

SNR is used as an ADDITIONAL DISCRIMINATION CRITERION