Present status of Mediterranean marine biodiversity and potential anthropogenic threat

<u>Reygondeau G.</u>, Albouy C., Hattab T., Benedetti F., Irisson J.O., Gasparini S., Guieu C., Ayata S., Mackenzie B. and Koubbi P.

GLOBAL CHALLENGES: ACHIEVING SUSTAINABILITY

Copenhagen, october 2014

Context of the study

- A complex coupled system (Mermex group, 2011)
- A biotope in mutation:
- . Climate change
- . Increasing anthropogenic pressures
- An important endemism of marine species and emblematic species already endangered

Objectives

1) Evaluate the ecosystems characteristics of the Mediterranean sea

+ from 🔪 🗸 to

+ Quantify the biodiversity gradient and special features

Objectives

2) Link anthropogenic pressure with biodiversity for an optimal management

+ Quantify the mean anthropogenic pressures and look at the relation with biodiversity

+ Evaluate the best place for MPAs implementation

Materials : Biological observations

Gather all biological informations from:

- + International database (Obis, Gbif, Pangea ...)
- + Atlas (fisheries and mammals distributions)
- + Online campaign (Sesame)
- + pers. com (Publications)

Materials : Biological observations

<u>Gath</u> + Int + Atl + Or

+ pe

Number of observations: > 20.000.000 presence Number of species (sp. and spp.) >2000 Mean trophic level, mean size, depth range

and ecology are retrieved for each species

		A	B	C	D	E	F	G	Н	1
	1	name (genus_species) if not informed 💌	size min (mm)	size max (mm)	Trophic Level (see Fishbase)	depth range min	depth range max	Habitat	zone PELAGIQUE	
		-		-						ъ° Б
45 [°] N	1066	Lepadogaster_purpurea	NaN	75	3.3	1	20	BENTHIC	SEAFLOOR	
	1067	Lepidion_guentheri	NaN	810	3.6	750	800	DEMERSAL	SEAFLOOR	
	1068	Lepidion_lepidion	150	300	3.6	150	2000	DEMERSAL	SEAFLOOR	
40 [°] N	1069	Lepidopus_caudatus	1800	2100	3.8	30	400	PELAGIQUE	MESOPELAGIQUE	
	1070	Lepidorhombus_boscii	300	400	3.7	150	400	BENTHIC	SEAFLOOR	
	1071	Lepidorhombus_whiffiagonis	425	600	4.2	50	400	BENTHIC	SEAFLOOR	
35 [°] N	1072	Lepidotrigla_cavillone	115	200	3.2	30	450	BENTHIC	SEAFLOOR	3
	1073	Lepidotrigla_dieuzeidei	100	150	3.7	60	250	BENTHIC	SEAFLOOR	
	1074	Lestidiops_jayakari_jayakari	NaN	NaN	4.2	50	2000	PELAGIQUE	BATHYPELAGIQUE	
30 [°] N	1075	Lestidiops_sphyrenoides	NaN	NaN	4.5	50	600	PELAGIQUE	MESOPELAGIQUE	
	1076	Lesueurigobius_friesii	50	100	3.2	10	130	BENTHIC	SEAFLOOR	
	1077	Lesueurigobius_sanzi	NaN	NaN	3.6	40	100	BENTHIC	SEAFLOOR	
	1078	Lesueurigobius_suerii	50	80	3.5	20	100	BENTHIC	SEAFLOOR	
	1079	Leucoraja_circularis	700	1200	3.5	70	250	BENTHIC	SEAFLOOR	
	1080	Leucoraja_fullonica	950	1150	3.5	100	400	BENTHIC	SEAFLOOR	
	1081	Leucoraja_melitensis	NaN	NaN	3.3	60	600	BENTHIC	SEAFLOOR	
	1082	Leucoraja_naevus	650	720	3.9	50	200	BENTHIC	SEAFLOOR	

Materials : Anthropogenic pressures

Human pressures are gathered:

- + Halpern et al. (2008) and Coll et al. (2010)
- + IUCN (2013)

14 Parameters gathered and summarized into 3 categories:

Methods: spatial distribution models

Best Environmental parameters and layer

Six environmental niche models (Hutchinson,1957) used: Enfa, Gower, NPPEN, Maxent, GARP, BioClim

Index of Hirzel et al. (2006) to evaluate the probability of presence for each model and species + Expert knowledge

-1-

Model averaging weighted by Hirzel index

Methods: spatial distribution models

Index of Hirzel et al. (2006) to evaluate the probability of presence for each model and species + Expert knowledge

Model averaging weighted by Hirzel index

Biodiversity of the Mediterranean sea

Species Richness (log10(x+1))

High spatial variability in the biodiversity gradient between trophic level

Importance of taking into account all trophic levels to evaluate the biodiversity gradient

Biodiversity of the Mediterranean sea

species richness (log10(x+1))

No congruent macro-ecological gradients between layers Importance of the vertical dimension

Ecoregionalisation of the Mediterranean sea

25 ecosystems are found in the Mediterranean sea.

Each ecosystem represents a specific:

- Species association and dominant species at each trophic level

- Environmental biotope

Approximation of the spatial distribution of MS marine ecosystems

Anthropogenic Impact on MS ecosystems

MPAs distribution

Effective MPAs are selected:

- to reduce fishing pressure and/or pollution level on high-medium biodiversity area
- need to be in areas that will not be too altered by climate change
- are in a same ecosystem and dynamically connected by the current

Potential MPAs distributions

Marine ecosystems

Connectivity

Exclusive Economical Zone

Potential MPAs distributions

Potential MPAs distributions

required MPAs

Priority

Present situation

Conclusions & Caveats

CONCLUSIONS

 To capture the main biodiversity pattern in the MS, all type of organisms and vertical features need to be taken into account

Each region of the basin is at least altered by one type of anthropogenic pressure

 There is an increasing need of biodiversity protection : MPAs The present implementation of MPAs are encouraging but hot spots of Perturbation are still not protected

Perspective

- Implementation of Ecosystem services index: MESI (AMEMR, june 2014)

Thank you for your attention Any questions ?

Gabriel Reygondeau

Représentant LOV : Fabio Benedetti, Jean-Olivier Irisson, Sakina-Dorothée Ayata Représentant Montpellier / Sete: Camille Albouy, Tarek Hattab, David Mouillot, François Guillaumon, François Le loch Représentant Skema: Christophe Mocquet Directeurs du Projet: Xavier Durieu de Madron, Cecile Guieu & Philippe Koubbi

Context of the study

- Several studies have attempted to map MS biodiversity (Coll et al., 2012; Benedetti et al., 2014)

- Identify the main potential threat by creating new indices (Halpern et al., 2014; Coll et al., 2012)