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Lack of inter-comparison

More data
Plankton imaging

➤ Report performances of two classification approaches

➤ Provide baseline results for future comparisons

Unbalanced datasets 174 papers

3 benchmark 
datasets
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ISIIS

IFCB Zoocam

Zooscan

Flowcam

https://whoigit.github.io/whoi-plankton/
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Datasets − processing

• include every object

• as detailed as possible… but small classes

‣ if possible, merge with close relevant class

‣ otherwise, merge with miscellaneous

• define broader classes corresponding to 
traditional approaches (e.g. Copepoda)

• categorise classes in plankton classes or not
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Copepoda Rhizaria Detritus Annelida

Object number

Wi =
cmax

ci

Number of objects in largest class

Number of objects in class i

Weights for class i

Copepoda Rhizaria Detritus Annelida

Class weights
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Material & methods
Models

Image ClassificationFeatures

• area

• gray levels

• feret

• circ

• …

CopepodaRF

handcrafted features

CNN features

Gridsearch for hyperparameters

CopepodaCNN

Conv. Pool. Flatten… Fully connected layers & dropout 

Network weights 
from Imagenet

Classif.
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CNN = convolutional neural network

RF = random forest


W = weighted

NW = non weighted

Overall

• CNN > RF

• NW > W

Plankton classes

• CNN >> RF

+ 9-32% + 11-40%

Model performances on detailed classes

Small classes

• CNN >> RF

• W > NW

recall
precision

class weights
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Model performances on detailed and broader classes

RF confusions within 
broader groups Acartiidae Calanidae Candaciidae Centropagidae Temoridae
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• objects size

• time and power consumption

Lots lots lots lots lots lots of data Lots of data Transfer learning

OR +• data availability

size features
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Thelma Panaïotis

thelma.panaiotis@imev-mer.fr

https://github.com/ThelmaPana/plankton_classif_benchmark

Thank you


