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Abstract
Plankton imaging systems supported by automated classification and analysis have improved ecologists’ abil-

ity to observe aquatic ecosystems. Today, we are on the cusp of reliably tracking plankton populations with a
suite of lab-based and in situ tools, collecting imaging data at unprecedentedly fine spatial and temporal scales.
But these data have potential well beyond examining the abundances of different taxa; the individual images
themselves contain a wealth of information on functional traits. Here, we outline traits that could be measured
from image data, suggest machine learning and computer vision approaches to extract functional trait informa-
tion from the images, and discuss promising avenues for novel studies. The approaches we discuss are data
agnostic and are broadly applicable to imagery of other aquatic or terrestrial organisms.

Over the past 40 yr, in situ and laboratory-based plankton
imaging systems have developed rapidly and proven capable
of describing the distribution of organisms on unprecedented
spatiotemporal scales, from microns to ocean basins and from
seconds to decades (Ortner et al. 1979; Davis et al. 1992;
Olson and Sosik 2007; Gorsky et al. 2010; Picheral et al. 2010;
Sieracki et al. 2010; Ohman et al. 2018). There is a huge vari-
ety of plankton imaging devices with a range of technical and
ecological applications: living or preserved samples; in the lab-
oratory or in the field; snapshots or continuous video; color or
grayscale; coherent or incoherent illumination (Benfield
et al. 2007; Lombard et al. 2019). Each tool is limited to a spe-
cific portion of the plankton size spectrum and taxonomic tree
by illumination and magnification constraints. Combining such
modalities would allow aquatic ecologists to study the full-size
spectrum of plankton communities and provide a holistic view of
the planktonic ecosystem (Stemmann and Boss 2012; Romagnan
et al. 2015; Lombard et al. 2019). These imaging systems enable
the simultaneous estimation of the taxonomic structure of a com-
munity and measurement of morphological characteristics of
individual organisms. The amount of recorded data has increased
immensely, both in quantity and in quality, due to improve-
ments in instrumentation—higher pixel density sensors,
faster bus speeds, and more powerful embedded computers—
and developments in image post-processing. Moreover, using
imaging techniques on preserved net- or bottle-based plankton
samples has given scientists the opportunity to revisit historic
archives (García-Comas et al. 2011; Peacock et al. 2014).

The principal objective of plankton imaging has been to
extract quantitative, population-level information through taxo-
nomic recognition of individual objects. Manual annotation of
image data remains a nontrivial task that requires expert knowl-
edge and lots of time, even with semiautomated recognition
(Culverhouse et al. 2003, 2014; Grosjean et al. 2004). Human
labeling has remained the major bottleneck limiting scientists’
ability to analyze image data or use it for monitoring purposes
(MacLeod et al. 2010). Scientists have started to look toward
supervised machine learning (ML) methods—algorithms that
learn to classify new data from a set of human-generated training
examples—to expedite classification efforts (Irisson et al. 2022).

Until the 2010s, such methods typically involved extracting
hand-engineered numerical features from a curated set of train-
ing images followed by tuning an ensemble or margin-based clas-
sifier (Simpson et al. 1991; Blaschko et al. 2005; Sosik and
Olson 2007; Gorsky et al. 2010). Computers were programmed
to measure shape attributes—such as area, eccentricity, or aspect
ratio—and texture metrics—like variance in gray levels—from
the images. These routines were generally written for data col-
lected by a specific imaging system and required manual parame-
ter tuning to ensure accurate measurements. Recently, aquatic
ecologists have started applying popular deep-learning tech-
niques that have surpassed previous state-of-the-art classification
performance on both benchmark and plankton specific datasets
(LeCun et al. 2015; Gonz�alez et al. 2017; Orenstein and
Beijbom 2017; Luo et al. 2018; Ellen et al. 2019). Deep methods
learn representations directly from images, obviating the need
for human defined shape and texture attributes, but require an
enormous amount of annotated training data to appropriately
tune (Bengio et al. 2013; Sun et al. 2017).

Functional trait-based approaches (FTBAs) describing plank-
ton ecosystems have been developed in parallel with advances
in imaging systems (Litchman and Klausmeier 2008; Lit-
chman et al. 2013; Kiørboe et al. 2018; Martini et al. 2021).
Rather than considering the taxonomic identity of an organ-
ism, FTBAs instead characterize them by their specific combi-
nation of functional traits—characteristics of individual
organisms that impact their fitness via resource acquisition,
growth, reproduction, and survival (Violle et al. 2007). Trait
information transcends taxa and may have several advantages
over classical taxonomic information: (1) organisms are dis-
tributed in the environment mainly according to their traits,
not their taxonomic classification; (2) ecosystem functions
depend on the traits of constituent organisms, not their taxo-
nomic composition; and (3) while aquatic ecosystems are
inhabited by a myriad of species (e.g., hundreds of thousands
of eukaryotic taxa in the upper ocean; de Vargas et al. 2015),
key taxa-transcending traits are few (Martini et al. 2021). Trait-
based descriptions therefore have the potential to encapsulate
the complexity of aquatic ecosystems in a concise number of
metrics (Kiørboe et al. 2018).
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The functional trait-based perspective suggests that
obtaining information on the characteristics of individual
organisms directly from images is an efficient alternative to
sorting the data taxonomically (Martini et al. 2021). Indeed,
efforts have already been made to reanalyze hand-engineered
image features originally drawn for classification purposes.
This approach has revealed cryptic patterns in plankton com-
munities, such as the morphological characteristics of particu-
late matter in the global ocean and the feeding habits of
marine copepods along an Arctic sea-ice gradient (Trudnowska
et al. 2021; Vilgrain et al. 2021). Such studies are just begin-
ning to combine high-throughput imaging systems and auto-
mated analysis techniques for trait-based studies. We believe
there is much more to be done and learned by leveraging a
suite of powerful new, deep neural network-based, ML tools in
the context of functional trait-based ecology.

This paper aims to highlight how automated processing
techniques might be applied to gain direct access to plankton
functional traits from individual images and, eventually, enrich
our understanding of pelagic ecosystems. First, we detail traits
that lend themselves to observation in images, regardless of
how the image has been acquired (in situ or in the lab, high
throughput or piecewise acquisition, etc.). We distinguish
between traits that have a clear visual signature and can be
measured from the image itself and traits that are inferred from
the image, taking into account additional assumptions or con-
textual variables. The second section is dedicated to ML
methods that could be used to estimate functional traits from
images with a focus on new deep neural network procedures.
These techniques rely on human annotations to learn general
representations of desired traits that are perhaps inaccessible
via an algorithm designed to make a particular measurement.
We encourage ecologists to adopt an “evaluation-first” design
paradigm to inform data annotation and algorithm selection.
We conclude with several forward-looking suggestions regard-
ing potential statistical analyses of the traits collected by ML
algorithms, future instrument design to collect functional trait
data, and extensions of these methods to other organisms.

Plankton traits from images
Imaging of planktonic organisms enables studies that track

whole communities while collecting individual-level metrics
such as functional traits (Fig. 1). In situ systems, in particular,
can capture images of undisturbed creatures that reveal their
pose, position, behavioral responses, and local interactions
between organisms (Ohman 2019; Vilgrain et al. 2021).

For the rest of this paper, we primarily discuss images that
are already segmented into regions of interest (ROIs). For most
plankton imaging systems, it is relatively easy to remove targets
from full frame images since they are sparsely distributed
against uniform background intensities (Gorsky et al. 2010;
Orenstein et al. 2020). Plankton imaging systems usually select
ROIs by distinguishing foreground pixels from the background
without regard to the actual nature of the object. Therefore, the

instrument does not discriminate between living creatures and
particles such as marine snow (fecal pellets and other organic
detritus). At any time and depth in pelagic systems, abundance,
and biomass of marine snow dominate and thus form the bulk
of collected image data (Alldredge and Silver 1988; Stemmann
and Boss 2012; Ohman et al. 2018; Trudnowska et al. 2021).
Analysis of ROIs of marine snow is an important area of active
research, but is not the focus of this work. In this section, we
will focus on individual organisms’ traits, following the typol-
ogy presented in Fig. 1, and discuss how these traits could be
measured or inferred from images.

Measured traits
Size: The “master trait”

Cell or body size is a functional trait that can be readily
measured from a calibrated image (Fig. 2a–c). Indeed, size is
the only directly measured trait that has been consistently
analyzed from image data (Picheral et al. 2010; Giering
et al. 2020). Size transcends the scales of organization of bio-
logical systems, from the individual to the whole ecosystem
through allometric relationships involving metabolism, devel-
opment, feeding, and mobility (Fig. 1; Platt and Denman 1977,
Hansen et al. 1994, Litchman et al. 2013, Blanchard
et al. 2017). In aquatic ecology, the size structure of the whole
community of organisms has been recognized as a property
explaining trophic network organization and functioning
since the early 1970s (Sheldon et al. 1972; Sieburth
et al. 1978). It is hence often referred to as a “master trait.”

Size should be understood in all its dimensions, not only in
terms of length (L1) but also surface (L2) and volume (L3) or,
equivalently, individual biomass. The major axis length is a
first-order estimate of size measurable from images. Surface can
be estimated from the cross-sectional area an object occupies in
the image plane. Volume can likewise be derived from the parti-
cle’s 2D projection under a set of assumptions (Moberg and
Sosik 2012). These metrics, computed either through length
measurements or equivalent spherical diameter (ESD), are the
standard approach to estimating size spectra from sets of indi-
vidual plankton image data. The measurements, however, must
be calibrated between systems and deployments since they can
vary due to foreshortening as a function of the object’s orienta-
tion relative to the image plane, the imaging system itself, or
the image processing pipeline (Giering et al. 2020).

Beyond size, other morphological traits have not been stud-
ied as extensively since plankton were historically sampled
with nets or bottles. While effective for taxonomic identifica-
tion, these extractive techniques can damage or destroy fragile
aquatic organisms, hampering efforts to collect information
about the relationship between the individual’s morphology1

1Note that in this paper “morphology” should be understood in its bio-
logical sense, that is, the visually identifiable properties of an object, rather
than in its computer vision sense, that is, the numerical characteristics
derived from the binary mask of the object (its “imprint” in the image).
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and its environment (Remsen et al. 2004; Whitmore
et al. 2019). In situ imaging devices can, however, measure
these intrinsic and contextual elements without altering an
individual’s expression of its morphological traits (Ellen
et al. 2019).

Organism shape and body plan
The shape of an individual organism is intimately linked

to its biological function and the way it interacts with the
physical environment (Kiørboe 2011b; Hirst 2012; Ryabov
et al. 2021). The particular hydrodynamic environment an
organism lives in imposes strict constraints on body plans.
A single organism can experience several orders of magni-
tude of Reynolds numbers while growing from an egg to
adulthood, from a “sticky” laminar flow to the turbulent
flow humans experience while swimming. As a result, it
usually develops different locomotion strategies throughout
its ontogeny. Copepods, for example, develop from spheri-
cal nauplius larvae that generate propulsion with append-
ages surrounding their body, to torpedo-shaped copepodite
stages equipped with appendages allowing them to hover or
jump by hundreds of body lengths per second to escape
threats detected via flow disturbances (Fig. 2i,j; Kiørboe
et al. 2010).

Unicellular organisms, such as diatoms or rhizarians, can
likewise alter the shape of the biological unit they are forming,
for example, by adopting colonial strategies and forming

colonies or chains (Fig. 2a–c,z,δ; Biard and Ohman 2020,
Kenitz et al. 2020). This strategy can be related to the need to
(1) counter predation by inflating size, (2) modify the surface-
to-volume ratio to increase resource acquisition, and (3) mod-
ify the drag coefficient to control settling velocities, or any
combination thereof (Nielsen 2006; Du Clos et al. 2021). Such
strategies can impact global-scale biogeochemical cycles by
altering the size-spectrum of the planktonic community and
the balance between the productive surface layer and the inte-
rior of the ocean.

Cell/body extensions
Many planktonic organisms bear spines, stout setae, and

other defensive structures that inhibit consumption by preda-
tors. Such structures (elongated spines on diatoms—Fig. 2c,
stout caudal setae of some harpacticoid copepods, etc.) are
optically resolvable and likely to confer a reduction in
predation rate.

In other plankton, body extensions are involved in feeding.
In situ imaging has revealed that the volume of water filtered
by these aquatic organisms may be markedly different than
expected from net-collected individuals (Ohman 2019). For
example, recent results from mesopelagic foraminifera have
shown that the complete resolution of calcite spines and rhi-
zopods can increase the surface area of the foraging apparatus
by 100–1000 times relative to what was expected from the
hard test alone (Fig. 2α; Gaskell et al. 2019). In situ images of
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(Figure legend continues on next page.)
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several types of tentacle-bearing predators, including cnidaria
and ctenophores, have also shown dramatically larger surface
areas when the full extent of natural swimming and hunting
postures is taken into account (Whitmore et al. 2019). Many
pteropods and appendicularians use large and elaborate mucus
extensions that filter vast quantities of water (Fig. 2β;
Alldredge 1981, Burridge et al. 2017). These fragile gelatinous
structures have broad implications for the biological carbon
pump by increasing particle flux to the deep ocean (Lombard
and Kiørboe 2010; Katija et al. 2017). The new information
revealed by imagery has forced a re-evaluation of the classical
approach to aquatic trophic network dynamics and caused an
update of some allometric relationships between body size
and filtering rates and even, in some instances, prey size
(Conley et al. 2018).

Finally, many organisms (especially crustaceans) have a
variety of mechanosensory and chemosensory setae that are
crucial for prey and threat detection and which can be
resolved by imaging systems (Fig. 2o,p). For example, prey–
predator interactions have been observed for the marine cope-
pod Oithona plumifera by analyzing frames from experimental
video recordings (Jiang and Paffenhöfer 2008). This advance-
ment could have important consequences for trophic network
analyses and our understanding of matter and energy flows,
since the sensory abilities of zooplanktonic organisms are
tightly linked to their feeding strategies (Kiørboe 2011a).

Bioluminescence
Bioluminescence is the emission of light by living organisms

resulting from a chemical reaction. It is a ubiquitous trait known
to exist in about three quarters of planktonic organisms down to
4000 m (Martini and Haddock 2017). Light emitted by organ-
isms can differ in terms of pattern and intensity: luminous spots
on a body-part, repeated pulses of bright light by gelatinous
organisms, diffuse sources of luminous excreted material, or
chains of luminescent structures (Priede et al. 2006). Regardless
of the specific manifestation, bioluminescence is strongly related

to intraspecific communication—such as mate finding—or
predator–prey interactions (Haddock et al. 2010). Until recently,
most of the biological functions attributed to this trait have been
inferred from the organism ecology, morphology, and the char-
acteristics of the bioluminescent emission (wavelength, intensity,
patterns, and chemistry).

Bioluminescent signals are easy to spot, either by in situ
observations or in the laboratory after collecting organisms,
and can be spontaneous or mechanically stimulated. Hence, it
remains difficult to assess whether measurements reflect natu-
ral behavior or the organism’s response to stimuli associated
with the imaging method. Recent deployments of high sensi-
tivity cameras on remotely operated vehicles have collected
images of bioluminescence in situ. In the near future, we
expect to see such tools used for consistent measurements of
this trait, especially if we can accurately assess the level of dis-
turbance created by the sampling devices (Ohman et al. 2018).
In the meantime, signal analysis of bioluminescence intensity
over time is a promising approach to better understand indi-
vidual signals as well as community changes over time
(Cronin et al. 2016; Messié et al. 2019).

Transparency, opacity, and color
Tissue transparency is an important characteristic of the

body plan of metazoans, including cnidarians, ctenophores,
chaetognaths, and pelagic tunicates (contrast Fig. 2k,t with
Fig. 2w,x,y). The combination of nearly transparent tissue
with high water content allows organisms to be large, often
with reduced metabolic requirements and reduced susceptibil-
ity to visual predators (Acuña et al. 2011). Opacity can like-
wise offer crucial information about many zooplanktonic
organisms since body structures, such as gonads (Fig. 2k,n)
and guts (Fig. 2j,o), can have variable content and appearances
in the image (Vilgrain et al. 2021). Gut fluorescence, for exam-
ple, has been used for several decades to estimate grazing rates
on phytoplankton (Pasternak 1994), and can reveal whether
feeding was recent or not (Sourisseau et al. 2008). Other

(Figure legend continued from previous page.)
Fig. 2. Example of plankton images on which traits can be identified. (a–h) Diatoms, (i–v) copepods, (w–δ) other taxa. (a–c) Chains of Chaetoceros spp.
of different sizes (Scripps Pier Cam [SPC]); note the long spines on (c). (d) Sexual stage of Guinardia flaccida (Imaging FlowCytobot [IFCB]). (e) Dinoflagel-
late consuming a diatom chain (Guinardia delicatula) by external digestion in a feeding veil (pallium) (IFCB). (f) Guinardia delicatula infected with parasite
(first arrow) or as an empty frustule (second arrow) [IFCB]. (g) Ditylum brightwellii cell dividing (IFCB). (h) Coscinodiscophycidae (centric diatoms) con-
taining various amounts of pigments (Planktoscope). (i) Nauplius stage of a crustacean (ZooScan), (j–m) calanoid copepods (Underwater Vision Profiler
5), note the full gut (arrow) and active posture with antennae deployed on (j), the pigmented (dark) body parts on (j–l), the lipid sac (arrow) and resting
posture, with antennae along the body on (l), and the curved antennae (arrow) associated with a jump of the copepod on (m). (n) Immature (top) and
mature (bottom, with visible oocytes—arrow) female of Calanus hyperboreus (Lightframe On-sight Key species Investigation [LOKI]). (o) Gaetanus
brevispinus displaying many sensory setae on its antennae and a well visible gut (arrow) (LOKI). (p) Another copepod with well visible setae and two egg
sacs (arrows) (SPC). (q) Copepod associated with (possibly feeding on) a marine snow particle (ZooGlider). (r) Microsetella sp. displaying many spines
and intense coloration, likely from its gut content (Planktoscope). (s) Calanoid copepod with parasite dinoflagellates (arrow) (ZooCAM). (t) Male (with
geniculate antennae—arrow, left) and female (with bulging genital segment—arrow, right) of Centropages sp. (ZooCAM). (u) Oncaea mating [SPC]. (v)
Empty copepod carcass or molt (ZooScan). (w) Doliolid budding (ISIIS). (x) Salp with an amphipod inside (arrow) (UVP). (y) Transparent Doliolid (SPC).
(z) A few solitary Rhizaria, family Aulospheridae (ZooGlider), to be contrasted with (δ). (α) Foraminifera with long cell extensions (UVP). (β) Pteropod
(dark) with part of its mucus net deployed (gray). (ɣ) Ctenophore, family Mertensiidae, with very long fishing tentacles deployed (ISIIS). (δ) A colonial
Rhizaria, order Collodaria (ZooGlider).

Orenstein et al. Image-based plankton traits from ML

1652

 19395590, 2022, 8, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lno.12101 by C

ochrane France, W
iley O

nline L
ibrary on [17/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



pigments may be linked to physiological functions, such as
carotenoids which offer oxidative stress protection to marine
and freshwater copepods (Hylander et al. 2015; Schneider
et al. 2016).

For unicellular organisms, pigmentation has been measured
for decades from individual cells as a monochromatic or mul-
tispectral fluorescence signal (Olson et al. 1991, 2003) and can
now be acquired alongside images (Olson and Sosik 2007;
Sieracki et al. 2010). Individual pictures can yield the identifi-
cation and quantification of intracellular structures, such as
chloroplasts (Fig. 2h) of photosynthetic symbionts, epibionts,
or parasites (Fig. 2f). Pigments can also be measured either in
their cell of origin (Fig. 2h), or inside the vacuoles or the gut
of a consumer (Fig. 2r). Thus, a combination of image mea-
surements may be required to assess whether the pigmenta-
tion actually originates from the individual observed,
especially in the complex case of mixotrophic organisms
(Flynn et al. 2013; Lauffer et al. 2015).

Photosynthesis
Among the main light-acquisition traits (Litchman and

Klausmeier 2008; Kiørboe et al. 2018; Martini et al. 2021), the
most common can be estimated at the individual level from
images using microscope-based saturating-flash fluorescence
measurements (e.g., quantum yield of photochemistry,
photosynthesis-irradiance curves related parameters, non-
photochemical quenching, and functional absorption cross sec-
tion). This has been performed in natural phytoplankton
populations (Olson et al. 1996; Villareal 2004; Dijkman and
Kromkamp 2006). Recent developments in hyperspectral imag-
ing combined with optical microscopy will allow estimation of
pigment content (Fig. 2h) and spectral absorption properties
(Méléder et al. 2013) at the individual scale (Xu et al. 2020).

Lipid reserves
Lipid allocation is a key component of energy reserves and

buoyancy for a variety of organisms. In organisms that have
adapted to conditions of intermittent resources, reserves can
be found in dedicated internal structures that could be mea-
sured directly from images: vacuoles in unicellular plankton,
lipid droplets in both unicellular and metazoan organisms,
and lipid sacs in zooplankton (Fig. 2l) thriving in extreme sea-
sonal conditions (e.g., upwelling along eastern boundary cur-
rents and monsoon or polar oceans). Lipids can represent up
to 80% of body volume in polar copepods, for example, and
contribute actively to parts of the global carbon cycle through
the lipid pump (J�onasd�ottir et al. 2015). Imaging can be used to
visually estimate these lipid reserves in copepods using geo-
metric approaches akin to measuring whole body volume and
biomass (Schmid et al. 2018). Lipid droplets in individual phy-
toplankton cells can be quantified using holotomographic
imaging devices (Jung et al. 2018), although this technique is
not feasible yet for in situ measurement.

Inferred traits
The functional traits discussed so far can be measured

directly from images. Many others cannot but could rather be
estimated by combining visible features and environmental
context metrics obtained from the sampling device metadata
(temperature, light level, etc.).

Biomass and biovolume
Biovolume and biomass, as opposed to length and shape,

can be estimated from an organism or cell measured area
using empirical relationships specifically derived for a particu-
lar imaging instrument and target organism (Hillebrand
et al. 1999; Menden-Deuer and Lessard 2000; Moberg and
Sosik 2012). Biomass estimates from biovolume can involve
simple conversion factors and ratios that may vary between
organisms. For example, a jellyfish and a crustacean of the
same ESD have distinct biomass conversion factors (Lehette
and Hern�andez-Le�on 2009; McConville et al. 2017; Giering
et al. 2019). These relationships can be generic for whole
groups or calibrated for individual species or development
stages (Ikeda et al. 2007). Beyond biomass, carbon and nitro-
gen content per cell could be estimated for nondiatom marine
phytoplankton species whose shape roughly conforms to pro-
late spheres, as demonstrated by Verity et al. (1992).

Feeding and metabolic rates
In situ images of relatively transparent aquatic organisms

can be used to estimate the volume swept while feeding
(Fig. 2α–ɣ), the digestive tract fullness (Fig. 2j,o), and the fre-
quency of actual feeding interactions (Fig. 2e,q). Ingestion
rates, gut transit time and maximum feeding rates could sub-
sequently be estimated with concurrent measurements of
environmental variables such as temperature and prey con-
centrations (Wirtz 2013). Metabolic activities, such as respira-
tion and excretion, scale with organism size (Banse 1976;
Ikeda et al. 2001), allowing the estimation of, for example,
zooplankton community respiration or excretion as the sum
of all individual organisms’ activities (Ikeda 2014).

Swimming and activity
Aquatic organisms have evolved diverse locomotive struc-

tures with clear morphological signatures like gas vacuoles, fla-
gella, and cilia. An organism’s specific motility strategy affects
the trade-off between energy intake through feeding and
death by predation (Harvey and Menden-Deuer 2012). It also
indicates if the organism can actively influence its position in
the water column and overcome turbulent mixing (Gallager
et al. 2004) (Fig. 2m, of a copepod “jumping”). Activity pat-
terns can potentially be inferred from still images based on
the position of body and appendages. For example, Vilgrain
et al. (2021) suggested that the “body contour complexity”
defined by their multivariate analysis of thousands of individ-
ual images of Arctic copepods revealed that copepods were
hovering and foraging in the marginal ice zone in spring
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when the phytoplankton bloom occurred (Fig. 2j,k). Under
continuous ice cover, individual copepods displayed a posture
typical of dormancy (Fig. 2l).

Diel vertical migration (DVM) is a peculiar case of swim-
ming activity that influences the fitness of a range of highly
mobile aquatic organisms. Zooplankton evolved this behavior
as a trade-off between maximizing feeding opportunities on
the primary producers thriving in the well-lit surface and min-
imizing mortality from visual predators (Aksnes and
Giske 1990; Möller et al. 2015). Recent results suggest that
both the propensity to migrate vertically and the amplitude of
DVM varies with the body size of planktonic copepods
(Ohman and Romagnan 2016). The accurate characterization
of metazoan body size could then be combined with visual
indices of activity level to predict the migration behavior of
zooplanktonic organisms.

Interactions
Interactions among organisms or between organisms and

particles can be split in two categories: the first involves inter-
actions between distinct entities spread within the water col-
umn (e.g., predator and prey; Fig. 2e), while the second occurs
at the scale of an individual (e.g., parasitism; Fig. 2f,s,x). In
situ imaging systems that record the undisturbed relative posi-
tion of individuals could be used to reveal traits related to spa-
tial interactions, such as the feeding (Fig. 2e,q), mating
(Fig. 2u), parasite infection (Fig. 2f), or predation. When
coupled with the appropriate information extraction tech-
nique, such data will allow scientists to better understand
inter- and intraspecific relationships, from intracellular symbi-
osis and parasitism to planktonic interactions within micro-
habitats like marine snow or other detrital matter (Peacock
et al. 2014; Nishibe et al. 2015).

Reproduction strategy, fecundity, and division rate
Reproduction strategies form a continuum bounded by

r (many offspring, no brooding) and K (few offspring,
brooding) strategies (Jaspers et al. 2018). Taxa with r-strategies
tend to have a smaller size at maturity and to produce large
clutches—many eggs are released during a single spawning
event—while K-strategists tend to produce larger adults and
release a few eggs at a time. K-strategists’ eggs are also often
much larger, provided with substantial lipid reserves, and ben-
efit from parental care (e.g., brooding pouches from amphi-
pods or egg sacs from copepods).

In situ imaging systems, with sufficient pixel resolution,
could be used to count free eggs in the water column, individ-
uals within egg sacs (Fig. 2p; Möller et al. 2015) or to estimate
the occurrence of mature oocytes in females’ gonads (Fig. 2k,
n; Niehoff 2007). Daily individual egg production rates could
be estimated from these measures—coupled with simulta-
neous in situ temperature data, the estimated proportion of
mature females, and female size at maturity—via known allo-
metric relationships and temperature-dependent, species-

specific hatching time (Niehoff 2003). For asexually rep-
roducing organisms, new budding individuals could be
directly counted on the image (Fig. 2w), and frequency of cell
division (Fig. 2g) could be used to infer protist population
level division (Campbell et al. 2010; Brosnahan et al. 2015).
Monitoring the evolution of taxonomically resolved plank-
tonic cell size in both time and space could provide informa-
tion on productivity levels of a system (Hofmann et al. 2019).

Life cycles and lifespan
The majority of plankton are unicellular organisms whose

cell morphology is tightly linked to the phase of an individ-
ual’s development cycle, including sexual stages (Fig. 2d) and
dormant stages (Brosnahan et al. 2015). Most multicellular
zooplankton species also have morphologically distinct life
stages (Fig. 2i,j). Usually, the individual develops from an egg
to adulthood through several molting or metamorphosis
events. This process requires a significant energetic investment
over time, but it ensures that the morphology of growing indi-
viduals is well adapted to their changing environment
(Sainmont 2014). The appearance of early larval life stages of
crustaceans, pteropods, and polychaetes in the water column
is indicative of recent reproduction and successful hatching.
Images of sufficiently high resolution to identify these larval
stages can thus yield the reproductive phase of a local popula-
tion and contribute to estimates of the ecosystem productiv-
ity. Images could also provide further information on
individual ages. Zooplankton age is crucial for studying popu-
lation and community dynamics but is notoriously difficult to
determine (Kiørboe et al. 2015). For example, krill continue to
molt throughout their lives to accommodate growth. Krill can
also undergo “negative growth” and shrink if environmental
conditions are unfavorable for growth by relying on some spe-
cific strategies: the use of lipid stores, gonads resorption, etc.
In such cases, age cannot be determined from an image cap-
tured during an individual development stage, body size, or
gonad development. We are not aware of any attempt to accu-
rately estimate a numerical value of the age of individual zoo-
plankton directly from in situ images. It is unlikely that this
could ever be achieved, except for very peculiar cases where
aging would somehow “scar” an individual in a typical and
predictable way.

Dormancy and resting stages
Phytoplankton resting stages, such as dormant spores, can

be inferred from images and used to better estimate carbon
fluxes as they play a significant role in carbon export. In the
specific context of in situ imagery, diatom spores are an obvi-
ous target since they form inside the cell frustule. Live cells
and spores can be identified from in situ images of diatoms,
which is especially useful with chain-forming species for pro-
viding quantitative estimates of vertical fluxes (Salter
et al. 2012; Rembauville et al. 2018). Similarly, zooplankton
that accumulate lipid reserves can undergo dormancy (both
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quiescence and true diapause; Fig. 2l). This trait is associated
with a shift in metabolic rate, activity level, habitat, swim-
ming behavior, and survival (Baumgartner and Tarrant 2017).
Thus, it has a significant impact on individual fitness, local
population dynamics, and the biological carbon pump
(J�onasd�ottir et al. 2019). Images have been analyzed to charac-
terize dormant and active copepods in the Arctic by collecting
individual-level measurements of stage development, lipid
content, and associated depth distribution (Schmid et al. 2018).
Such individual measurements can be combined with in situ
temperature data to estimate an individual’s respiration rates at
the depth of dormancy and, eventually, infer the duration of
its dormancy phase (Maps et al. 2014).

Mortality
Living vs. dead organisms can be distinguished both manu-

ally and automatically in image data (Fig. 2f,v; Picheral
et al. 2017, Reimann et al. 2020). The use of high-throughput
imaging devices deployed in situ offer new opportunities to
estimate the spatiotemporal variation in the proportion of
dead individuals within natural phyto- and zooplankton com-
munities. More generally, the accumulation over time and
space of finely resolved trait distributions (e.g., development
stages, sizes, and proportion of dead individuals) could signifi-
cantly increase the usefulness and precision of statistical
approaches used to estimate mortality rates and life span
based on cohort detection and monitoring (Shaw et al. 2021).

Computer vision and ML approaches to estimate
traits from images

Computer vision and ML techniques offer scalable solu-
tions to automatically quantify functional traits from plank-
ton images (Table 1). Successful deployment of these methods
will require careful consideration of the target trait to select
the best course of action. Researchers then must collect spe-
cialized annotated data, select the candidate algorithms, and
evaluate its performance with an appropriate metric.

To this end, we recommend adopting an evaluation-first
design paradigm—where the specific task and quantitative
evaluation metric are defined before annotation begins—to
motivate the construction of these resources and the necessary
workflow (Gupta et al. 2019). Following this principle will
encourage scientists to think carefully about the ML method
they wish to use, the criteria for success, and therefore what
sort of labeled data they need. This output-centric approach
will help ensure human effort is not wasted generating inap-
propriate labeled data for a given task and minimize barriers
to experimentation.

Consider a project seeking to examine copepod egg mass
from image data (Fig. 3). The scientists narrowly define the
desired output as “the number of egg pixels in an ROI” that can
be further analyzed to estimate egg mass. Since the group cares
about individual pixels, they determine to experiment with

segmentation algorithms that will be evaluated with mean aver-
age precision (mAP; Table 2; Supporting Information S1). In
order to train and evaluate such models, the team will need to
annotate detailed pixel level masks and store them in a compat-
ible format.

In order to measure functional traits from images, one must
design a pipeline to take a project from initial human annota-
tion to deployment on unlabeled data. Here, we discuss how
to construct a training dataset, potential computer vision and

Table 1. Definitions of a few computational terms, highlighting
important, but subtle, differences.

Computer vision (CV) A broad subfield of computer science dedicated

to using a computer to interpret images and

video sequences.

Machine learning (ML) A set of statistical approaches that attempt to

discern patterns in data, either automatically

or based on explicit human instructions.

Supervised ML ML techniques that teach a computer to

recognize patterns using a set of expert-

curated examples, such as annotated images.

Unsupervised ML ML methods that attempt to group data

together without human intervention.

Clustering algorithms are a common example.

Their performance is often difficult to

evaluate.

Training set A collection of data annotated by human

experts for teaching a computer how to

interpret information. Building the labeled

dataset is the most time-consuming and

critical part of an ML workflow.

Validation set A separate human labeled dataset used to

evaluate a trained system. These data are

entirely independent of the training set and

should represent conditions the system might

encounter in the field. Also referred to as test

data.

Feature-based learning ML algorithms that operate on a reduced, hand-

engineered feature space. Each data point is

cast as a vector of measurements and used to

tune a set of parameters that dictate how the

model works.

Deep neural

networks (DNNs)

A type of representational algorithm that learns

directly from raw data. DNNs layer many

mathematical abstractions on top of each

other to connect input information to a

desired output. Through iterative training, the

system learns the most salient features of the

input. Modern DNNs often have numerous

layers and billions of weights.

Transfer learning A shortcut for training DNNs by repurposing a

network originally trained for a different task.
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ML approaches to estimate traits from images, and how to
evaluate the trained systems. To our knowledge, none of the
deep-learning methods have been implemented for functional
trait analysis of plankton images. We thus suggest reading this
section as a guide to broad approaches, not as specific recom-
mendations of algorithms or models.

Datasets and labeling
The critical step in any supervised ML experiment is the

construction of a labeled training set suitable for a given
method. For classification tasks, this entails deciding on the
appropriate set of classes to consider and annotating the data
until there are sufficient labeled samples—typically 100–

1000 s per class for deep neural networks—to train the desired
model. To examine specific functional traits, an automated
analysis system will need to detect and measure specific fea-
tures. These tasks will require human effort beyond sorting
images to generate labeled data that localizes a particular trait,
masks relevant pixels, or estimates prevalence. The exact
annotation approach depends on the target trait and
corresponding computational method.

Annotation formats
ML frameworks expect data in specific standard formats. To

train a classifier, for example, training images are often
expected to be sorted into unique folders or accompanied by a

Using training data 
to tune the chosen 
architecture.

Define target trait 
and desired output.
e.g. egg mass, 
appendage 
extension

Select approach and 
evaluation metric.
e.g. segmentation 
evaluated with mAP

Identify algorithm 
and input format. 
e.g. UNet with 
COCO

Annotate image data in correct
format to build the training and
validation sets.
e.g. trace outline with LabelBox

Deploy on unseen, 
annotated test data. 
Acceptable?

Deploy on new unseen data and 
output trait metrics. e.g. % egg 
mass

Add more training data, reassess model, 
and tune hyper-parameters.

Evaluate on 
validation data. 
Acceptable?
e.g. mAP score to 
measure efficacy

Yes

No

Yes

No

Fig. 3. Workflow diagram for a computer vision approach targeting a specific functional trait extracted from plankton image data. In this example, a
group decides to target egg-bearing copepods with a UNet segmentation model. A human annotator selects ovigerous tissue from a copepod image
and outputs the mask in the COCO data format. The model is then trained and evaluated using the mAP (Table 2; Supporting Information S1). Note that
this workflow is not specific to plankton and could also be used for other types of organisms.
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numeric list indicating the class names. Object detection, seg-
mentation, and keypoint detection frameworks all likewise
require annotations in specific formats for training.

There are two common natural image datasets used for
benchmarking new approaches to such tasks: PASCAL Visual
Object Classes (VOC)2 and Common Objects in COntext
(COCO)3 (Everingham et al. 2010; Lin et al. 2014). These two
databases contain many thousands of images with bounding
boxes for object detection and pixel level segmentation labels.
Publicly available domain-specific datasets often adhere to the
VOC or COCO formats to facilitate experiments, model evalua-
tion with publicly available tools, and dataset interoperability.

Scientists seeking to fine tune existing architectures trained
on these datasets might consider adopting their exact annota-
tion formats. Alternatively, operators could save annotations
in whatever format is most convenient and write their own
data loader in the selected toolkit. PyTorch, for example, has a
generic dataset object that can be modified to accommodate
any input and output.

Annotation tools
There is a broad universe of tools for data annotation, rang-

ing from freeware interfaces to industry-scale software pack-
ages (e.g., LabelBox, RectLabel, and MATLAB Image Labeler).
Many of these are open source and can be adapted to include
contextual metadata or other parameters. Several tools have
been written specifically for in situ marine imagery that facili-
tate integration of oceanographic metadata (Gomes-Pereira
et al. 2016; Picheral et al. 2017). The choice of annotation
software should be dictated by ease of use and the ability to
output in standard data formats. Practitioners should invest
time researching contemporary options and select a package
that is actively being supported. Annotation requirements and
format standards will undoubtedly evolve as the technology
changes. At the time of writing, researchers should look for
services that (1) output data in COCO or VOC format, (2) have
an interface for polygon object detection labeling, (3) support
superpixel segmentation labeling assistance, and (4) allow
hierarchical annotations. We note that annotation interfaces
are typically independent of databases for storing and working
with the resulting data.

Data augmentation
Annotation efforts of any kind are expensive in terms of

both human labor and monetary cost, limiting the availability
of training data. Data augmentation is a common procedure
to subtly alter the appearance of labeled ROIs—via geometric
transformations or filtering operations—to avoid overfitting
the model. Done appropriately, the approach can improve the
representational power of the automated system. There is also
potential for producing synthetic training data via 3D models

or image merging before training (Mahmood et al. 2020). All
these operations should be undertaken conservatively and in
consideration of the target trait to avoid overfitting one’s
model to the augmented data.

Datasets for transfer learning and feature extraction
Transfer learning is an effective way to reduce the initial

annotation effort when preparing data to train a deep neural
network architecture for a new task. The parameters of a
model originally trained on a generic dataset like ImageNet
are fine-tuned to the new target dataset (Yosinski et al. 2014).
The method has been used for classification tasks for plankton
data (Orenstein and Beijbom 2017; Cheng et al. 2019). There
are currently three large, publicly available plankton image
datasets sorted for classification tasks that can be leveraged for
such designs (Sosik et al. 2014; Cowen et al. 2015; Elineau
et al. 2018).

Transfer learning is also an effective approach for
repurposing trained networks for other computer vision tasks
such as object detection or semantic segmentation (Girshick
et al. 2014; Long et al. 2015; Ouyang et al. 2016). Doing so for
plankton images will require generating sufficiently large
labeled datasets akin to those produced for classification tasks.
Codifying the annotation format across imaging systems—
and making the resulting datasets public—will speed develop-
ment of effective systems. Moreover, if these datasets are made
public, consistent data formats will ease interoperability and
speed development.

Feature extraction from deep nets—using internal represen-
tations of a model—is another viable option for rapidly gener-
ating features and classifiers from previously trained generic
classifiers (Donahue et al. 2014). These weights can be used
for unsupervised clustering or to train ensemble or margin
classifiers (Gonz�alez et al. 2019; Schröder et al. 2020).

Algorithms, approaches, and evaluation
There are a myriad of algorithms and approaches that have

been developed for computer vision tasks that could be
adapted for trait-based projects. As motivating examples, con-
sider two hypothetical studies: one examining ovigerous cope-
pods (Fig. 4) and another looking at parasitized diatoms
(Fig. 5; Peacock et al. 2014). Note how distinct these cases are:
the target organisms differ an order of magnitude in size, are
imaged with very different instruments, and occupy different
ecological niches. We highlight several broad categories of
techniques that might be used to develop a pipeline to gener-
ate the required data: handcrafted features, semantic classifica-
tion, object detection, segmentation, deep regression, and
keypoint estimation. We note there are many specific algo-
rithms, training regimes, hyperparameter tuning procedures,
and, in the case of deep learning, loss functions within each
category that can greatly impact system performance. Here,
we seek to give an overview of each area without making

2http://host.robots.ox.ac.uk/pascal/VOC/voc2007/htmldoc/index.html
3https://cocodataset.org/#format-data
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specific recommendations as to the exact approach to pursue;
it is not an exhaustive implementation guide. Most of the
following subsections focus on the potential application of
deep-learning models, rather than those based on human-
engineered features, in keeping with the broad thrust of
research in the computer vision community; modern repre-
sentation learning techniques tend to outperform earlier
approaches.

Handcrafted features and measurable traits
Morphological traits measurements can be made by

extracting hand-engineered features from ROIs. Such measure-
ments are made directly from the pixels and might include
major axis length, ESD, or opacity. Techniques for doing so
are well-established and standard in many in situ imaging
pipelines (Blaschko et al. 2005; Sosik and Olson 2007; Gorsky
et al. 2010). If the instrument produces color images, the color
channels could be used to infer information regarding an
organism’s pigment content or transparency. Calibrating these

approaches can be done concisely by comparing automated
measures with ground truth measurements made by a human
operator.

Morphological traits measurements (in the biological sense)
are the most directly interpretable, but require careful calibra-
tion of the pixel size and sample volume of a particular instru-
ment. Likewise, interoperability can be challenging since the
feature extraction technique will need to be rewritten for a
new instrument—there is no general use feature extractor for
different systems. However, once measurements are made and
converted into realistic units, the metrics are easily compara-
ble across devices.

Classification with trait-specific classes
Automated classifiers can be retrained to target specific

traits with a semantically, rather than taxonomically, labeled
set of images. If one wishes to separate ovigerous copepods
from other copepods, they could add a training category speci-
fying the semantic class “with eggs” (Fig. 4a). Similar semantic

Oithona

Oithona with eggs

Estimated
eggs = 42%

Estimated
eggs = 0%

b. Object detection c. Segmentation d. Regression e. Keypoint, pose

Fig. 4. Examples of several techniques for trait extraction from zooplankton images. The hypothetical use case is examining ovigerous copepods imaged
by the Scripps Plankton Camera system. The top panel is a non-egg bearing copepod. The bottom panel is an individual carrying an egg-sac. (a) Auto-
mated classifiers could be trained to add a semantic descriptor to the taxonomic class. (b) Object detection finds the organism and desired trait. (c) Seg-
mentation algorithms classify the pixels as belonging to the organism or the trait. (d) Regression estimates the percentage of pixels that represent the
trait. (e) Keypoint/pose estimation finds body nodes (red dots) and connects them (yellow lines) to estimate orientation or appendage extension.

G. delicatula

G. delicatula with parasites

Estimated w/ parasite = 0%

Estimated w/ parasite = 30%

b. Object detection c. Segmentation d. Regression

Fig. 5. Examples of several techniques for trait extraction from phytoplankton. The hypothetical use case is examining parasitized diatom chains imaged
by the Imaging FlowCytobot. The top panel is a healthy Guinardia delicatula. The bottom panel is a parasitized chain. (a) Automated classifiers could be
trained to add a semantic descriptor to the taxonomic class. (b) Object detection finds the entire chain, chloroplasts, and parasites. (c) Segmentation
algorithms classify individual pixels as belonging to the organism, chloroplasts, or parasites. (d) Regression estimates the amount of an image that corre-
sponds to the organelle/parasite biovolume.
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categories could be constructed to address traits such as body
extension, presence of parasites, or behavioral signatures
(e.g., extended appendages, body position, etc.). Any classifica-
tion method could be used in this manner: ensemble, margin,
deep nets, or otherwise. This has already been done to some
extent in the publicly available IFCB and ISIIS datasets (Sosik
et al. 2014; Cowen et al. 2015). Both datasets currently contain a
number of classes distinguished with semantic descriptors related
to traits: “G_delicatula_parasite” or “G_delicatula_external_para-
site” from the IFCB (Fig. 5a) and “trichodesmium_puff” or
“trichodesmium_tuft” from the ISIIS. Several classification efforts
on these and other datasets already include such trait informa-
tion (Luo et al. 2018; Ellen et al. 2019; Gonz�alez et al. 2019).

These efforts can be expanded in a targeted way by labeling
(or re-labeling) images with trait information and training a
new model. The resulting classifier could then be run on new
unlabeled data or as a second stage analyzer applied after ini-
tial classification. Evaluating the output could be done with
raw accuracy on a per class basis or as the mAP (Table 2). As
with any automated classification pipeline, care will need to
be taken to assess issues related to dataset shift (Moreno-Torres
et al. 2012; Gonz�alez et al. 2017).

Object detection for trait identification
Object detection pipelines are built to identify, select, and

propose labels for subregions in an image (Zhao et al. 2019).
Such techniques could be used to select egg sacs from the rest
of a copepod’s body or parasites inside a diatom chain

(Figs. 4b, 5b). Other target traits might be bioluminescent
structures, lipid reserves, or specific body parts. The models
could also be used to locate organisms in a full frame image
(Katija et al. 2021). Training object detection models for such
tasks will require new training sets that include bounding box
coordinates and labels targeting the traits. The resulting
bounding boxes could be used for count-based studies like
estimating the number of ovigerous individuals or the per-
centage of a population that has been feeding.

Object detection was historically accomplished by proposing
regions based on hand-engineered features from an input
image and a localizer searching the feature space (Lienhart and
Maydt 2002; Viola and Jones 2004; Felzenszwalb et al. 2010).
Recently, deep neural networks—such as Faster Regions with
Convolutional Neural Network (CNN) Features (RCNN), Single
Shot Multibox Detector (SSD), and You Only Look Once—have
been specifically designed to identify and select subregions of
images (Girshick et al. 2014; Redmon et al. 2016; Liu
et al. 2016a). These techniques are generally used to draw
bounding boxes around objects in natural image datasets like
COCO and VOC. To use these methods, aquatic ecologists will
need to localize traits with bounding boxes stored in a consis-
tent format encoding their location and size. Object detectors
are typically evaluated with the mean mAP score (Table 2).

Semantic and instance segmentation
Instead of selecting bounding boxes around subregions,

segmentation algorithms attempt to delineate sections of the

Table 2. Common evaluation metrics for automated classifiers. See Supporting Information for more detail and description.

Accuracy (acc) tpþ tn
tpþ f pþ f nþ f n

The number of true positives in a class returned by an automated classifier

over the total number of correct labels in the class.

Precision (p) tp
tpþ f p

The ratio of the number of correct labels over the total number of labels

assigned to that class.

Recall (r) tp
tpþ f n

The proportion of positive samples in a class that are correctly classified.

F1-score tp

tpþ 1
2 f pþ f n
� � The harmonic mean of precision and recall that summarizes model

performance in a single metric scaling between 0 and 1.

Average

precision (AP)

1
nþ1

X
rϵ 1=n,2=n,…,1f gp rð Þ The average of the precision over different levels of the recall.

Mean average

precision (mAP)

PQ
c¼1AP
Q

The mean AP over all classes. It is a summary statistic that describes how a

model does over all classes.

Intersection over

union (IoU)

A\B
A[B

A\B represents the area in pixels of the overlap between the region

proposed by the computer (A) and the ground truth (B). A[B is the total

number of pixels contained in both regions. IoU is a metric mostly used

for detection and segmentation tasks.
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image at the pixel level. Rather than returning boxes sur-
rounding interesting areas of an image, segmenters produce
masks where each pixel is tagged as belonging to a particular
region. Segmentation approaches are appropriate for trait
studies that require estimating mass. A computer could be
trained, for example, to select pixels that represent pigmented
regions of an organism, gut content, the egg tissue, or para-
sites (Figs. 4c, 5c). The resulting masks could then be used to
estimate an organism’s state (healthy/starved, ovigerous/not)
or the proportion of tissue dedicated to such functions.

Preparing data for training segmentation networks will
require very detailed human delineated, pixel-level masks. The
annotation task thus requires more time and attention from
the human expert than object detection or classification label-
ing. Superpixel-based assistance workflows can be used to
accelerate the annotation task (King et al. 2018). Segmenta-
tion tasks are also typically more computationally difficult
than detection. There are again many flavors of deep segmen-
tation networks. At the time of writing, UNet, Segnet, and
Mask RCNN are among the most widely applied models for
generic object segmentation tasks (Ronneberger et al. 2015;
Badrinarayanan et al. 2017; He et al. 2017). The performance
of segmentation algorithms of all types is typically stated as
the AP at different levels of intersection over union (Table 2).

The computer vision community makes a distinction
between “semantic” segmentation—labeling all pixels with a
class—and “instance” segmentation—separating each occur-
rence of a given class. For example, consider an image of two
touching copepods (Fig. 2u): semantic segmentation would
label all “copepod” pixels as a single region while instance seg-
mentation would label them as “copepod 1” and “copepod 2.”

Deep regression
The ultimate goal of any of the techniques we have men-

tioned is to output an estimate of some relevant trait—angle
relative to horizontal, extension of limbs, presence of eggs,
etc. Rather than learning an intermediate task like segmenta-
tion or object detection, deep regression algorithms seek to
train a model to directly output these estimates. Regression
approaches are thus appropriate for calculating numerical
properties of an object. Returning to the copepod egg exam-
ple, rather than training an object detector or segmenter, an
operator could instead build a network that outputs an esti-
mate of the percentage of the ROI occupied by eggs (Fig. 4d).
Likewise, a deep regressor could be trained to estimate the per-
centage of a chain ROI that is parasitized (Fig. 5d).

Deep regression approaches have been successfully
implemented on photos of humans to directly estimate head
pose and a subject’s age (Liu et al. 2016b; Rothe et al. 2018).
Using deep regression in this manner will discard other infor-
mation in the image, obviating the need for computationally
complex object detection and segmentation, potentially yield-
ing a more efficient means of getting the value of a trait that
can be expressed as a continuous number (Lathuilière

et al. 2020). Scientists wishing to use deep regression will need
to associate each image in their training set with a number
(e.g., percent egg mass or amount of parasitized tissue;
Figs. 4d, 5d) representing the target trait. The efficacy of these
techniques can be expressed as the mean squared error of the
predicted estimate.

Pose or keypoint estimation
Pose estimation networks attempt to teach computers to

recognize how a body is positioned in an image (Sapp and
Taskar 2013; Andriluka et al. 2014). These algorithms search
for and connect keypoints that together describe a very rough
skeleton. Keypoint analysis is ideal for studying organism ori-
entation and limb extension. By identifying head, tail, and
extremities, the computer can estimate what direction the
organism is facing relative to the camera and the angle of its
body parts (Fig. 4e). Such an approach could also be used to
investigate interactions between organisms from full frame
images.

Currently, pose estimators are almost exclusively used to
find people and determine their 3D orientation. Several recent
papers have suggested adapting these methods to animal
images both in the wild and the lab (Cao et al. 2019; Li
et al. 2020). Keypoint and pose tasks are relatively new as
compared to object detection and segmentation. A few con-
temporary approaches are PersonLab, OpenPose, and
DensePose (Cao et al. 2017; Papandreou et al. 2017; Alp Güler
et al. 2018). Keypoints are typically evaluated by specifying a
threshold distance from the true point location. Point pro-
posals can then be evaluated with accuracy as a function of
the threshold. Developing training data for such tasks requires
researchers to select relevant points in an ROI and save their
coordinates as xy pairs.

Evaluation metrics
There are many evaluation metrics used to assess the effi-

cacy of ML systems, and several that are particularly important
to the methods we have discussed (Table 2; Supporting
Information S1). Selection of the appropriate metric can better
guide training and deployment of ML systems by providing
informative feedback on the system performance. Classifier
accuracy, the average percent of correctly returned labels over
all classes, is the most commonly reported metric for plankton
classification systems. Accuracy is a useful but flawed metric,
often obscuring important errors since it only states the rate
of correct labels (Tharwat 2020). Practitioners should rather
rely on more informative metrics like precision, recall, and the
F1-score that explicitly encode false positives and negatives
between classes (Table 2; Supporting Information S1).

Object detectors and segmentation algorithms are often
evaluated with the mAP score, as defined in the VOC and
COCO challenges. The number encapsulates the trade-off
between precision at different levels of recall or
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Intersection over Union (Supporting Information S1). The
mAP score is the standard evaluation metric for evaluating
these models and are likewise critical to evaluate such proce-
dures for ecological applications. Deep regression and
keypoint estimation might use more familiar metrics like
mean average or absolute error.

Time and energy should be put into selecting and under-
standing these metrics, as they will guide model development
and deployment. These metrics can allow savvy observers to
diagnose biases in their training data and assess the efficacy of
a model. In an evaluation-first design scheme these insights
can allow researchers to quickly revise their strategy by alter-
ing human annotation goals or selecting alternative training
approaches (Fig. 3).

Perspectives and conclusion
Using ML for trait estimation: A promising tool

Digital imaging systems coupled with automated analysis
techniques are increasingly used by aquatic ecologists. Much
of the community’s effort has been focused on developing
classification approaches, largely delineated along taxonomic
lines (Irisson et al. 2022). We believe that the extraction of
functional traits is the next evolution in ML-enabled analysis
of ecological images. With traits values derived from in situ
images, aquatic ecologists could automatically estimate inter-
and intraspecific variability of functional traits, better link
diversity to ecosystem functioning, and parameterize and test
trait-based models to assess the health of aquatic ecosystems
(Martini et al. 2021).

As with classification efforts, developing trait extraction
systems will require a substantial investment of expert human
analysis. Images will need to be closely scrutinized and appro-
priately labeled, sometimes at the pixel level, to perform
experiments and validate new approaches. To this end, we
strongly advocate researchers employ the evaluation-first
design paradigm, where the target trait and criteria for success
are chosen before any annotation begins. Doing so will ensure
that labels are stored in a format compatible with a desired
model and enough data are annotated for the experiments,
thus facilitating interoperability.

All of the computational approaches presented have the
potential to yield significant new scientific results by revealing
individual level trait metrics across a population. We believe
that deep regression and pose estimation are especially prom-
ising for plankton trait studies. Pose estimation could be used
to examine the orientation of a group of organisms relative to
horizontal or the angle of their appendages relative to their
body. Deep regression would be effective for estimating pro-
portion in an image: for wxample, how extended are the
appendages or mucus net, how full is the gut, how big is the
lipid reserve, how curved or deformed is the shell, etc. This
approach will require segmentation style annotations but is
ultimately less computationally intensive to train and deploy.

We stress that this paper is meant to direct readers to broad
sets of ML tools; there are a multitude of viable combinations
of traits, ML techniques, and statistical analyses. Moreover,
new computer vision approaches are being released every year;
many of the specific models mentioned in this paper will very
likely be obsolete within a few years.

We anticipate that FTBAs via imaging will be maximally
effective when undertaken with a suite of instruments
targeting overlapping portions of the planktonic size spec-
trum. Facilitating studies at such a broad scale requires consci-
entious calibration of pixel size and sample volume for all
instruments capturing images of plankton. Indeed, calibration
is arguably more important for trait extraction than for taxo-
nomic classification. At a minimum, the pixel size has to be
well-established and reported to ensure that recovered mea-
surements are appropriately scaled. While the estimation of
pixel size is possible for microscopic imaging systems that are
imaging precisely in a single plane, accurate pixel size calibra-
tion cannot be achieved with single cameras; stereo vision or
active illumination is required to recover the scale. Ideally all
sources of variability, such as intensity and blur characteris-
tics, will be quantified and made widely available
(Vandromme et al. 2012; Giering et al. 2020). While sharing
these parameters will aid cross-dataset comparisons, true inter-
operability between in situ imaging tools will be achieved only
through extensive intercalibration studies.

From individual traits to ecosystem functioning
The computer vision and ML techniques we discussed will

yield previously inaccessible data: consistent, large-scale quan-
titative measures of trait expression at the individual level.
With these measurements, single trait distributions can be
estimated in space and time (Barton et al. 2013; Brun
et al. 2016; Carmona et al. 2016) and intraspecific variability
of traits could be documented (Martini et al. 2021). Statistical
models can subsequently be implemented to better under-
stand the interplay between trait expression and environmen-
tal factors by deriving empirical relationships between them.
These empirical relationships could further be used to struc-
ture and parameterize mechanistic models of planktonic com-
munities based on equations describing functional types and
traits (Follows et al. 2007; Stemmann and Boss 2012; Ward
et al. 2012; Le Quéré et al. 2016; Serra-Pompei et al. 2020).
Marrying large-scale observational capacity and modeling in
this manner would allow scientists to examine evolutionary
constraints on trait expression at unprecedented spatiotempo-
ral scales.

The estimation of functional traits at the individual level
will also yield further knowledge on ecosystem functioning by
giving access to bulk trait properties at the population or com-
munity levels, including community-scale insight into the
ecology of patchiness, individual interactions, and associated
advantages for resource acquisition such as light and nutrients
(Litchman and Klausmeier 2008). For instance, sex ratio could
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also be estimated from images, since male and female zoo-
plankton are often distinguished by traits that affect physiol-
ogy, behavior, and eventual fitness (Heuschele et al. 2013).
Females typically invest more resources in gonad development
and offspring production, often incurring higher predation
risks as a trade-off. For example, during DVM, females of the
krill species Meganyctiphanes norvegica migrate significantly
closer to the surface to forage at night than males
(Tarling 2003). This behavior leads to 40% higher energy
intake, yet increases the risk of visual predation, resulting in
the male-to-female sex ratio shifting from 1 : 1 at the begin-
ning of the summer to 3 : 1 by the onset of winter. The ability
to record finely resolved vertical profiles of sex-associated trait
frequencies could allow direct quantification of mating sea-
sonality and potential mating success and output. Such obser-
vations could also allow detecting potential ecological
perturbations as deviations from a baseline distribution of
traits. At the community scale, image-based functional traits,
such as size, photosynthetic traits, metabolic rates, or vertical
migration, provide further access to ecosystem functioning
through the estimation of primary production (Litchman
et al. 2015) or carbon export (Stamieszkin et al. 2015;
Archibald et al. 2019; Kiko et al. 2020).

Desirable qualities for future instruments
Future development of image acquisition systems should

consider trait analysis in the hardware and software design
phase. Four particular capabilities would be informative for
trait-based studies: (1) the ability to record color images,
(2) the capacity to record bursts of video, (3) the storage to
retain full-frame images (or the necessary metadata to recon-
struct them from ROIs), and (4) 3D imaging capabilities. Color
information, either as standard 3-channel color or hyper-
spectral, will facilitate studies seeking to quantify pigmenta-
tion, gut content, or bioluminescence with both segmentation
and object detection approaches. Recording video will make it
easier to assess interactions between individuals with real-time
object detectors. Retaining full frame images would allow rev-
isiting them and detecting objects that were not targets during
the initial processing. Increased storage capacity and speed
will allow instruments to hold more data, such as videos and
full frames, while maintaining deployment duration. 3D imag-
ing via stereo imaging, structure from motion, or Z-stack
image acquisition would provide better descriptions of organ-
ism volume and other structures with higher dimensional seg-
mentation models.

All of these new modalities are rapidly becoming realistic
for long-endurance, autonomous plankton imaging systems.
Disk space is continually becoming less expensive, bus rates
are getting faster, and embedded computers are getting more
power efficient. While the computer components are avail-
able, the actual construction and deployment will necessitate
significant development time and effort. In particular, given
enough power, on-board processing techniques could be

explored to automatically detect possible interactions or other
potentially interesting events to trigger video recording.

Beyond plankton
Plankton are far from the only organisms sampled by imag-

ing systems. Indeed, ecologists collect untold exobytes of
image and video data, including other marine organisms such
as fish, benthic organisms (Beyan and Browman 2020), mam-
mals (O’Connell et al. 2010; Karnowski et al. 2016), and fresh-
water benthic organisms (Miloševi�c et al. 2020). Research
teams that produce such data have already begun to leverage
ML techniques to analyze their data, largely relying on object
detection and taxonomic classification approaches (Allken
et al. 2019; Kloster et al. 2020; Mahmood et al. 2020). There
remains much to be learned by studying these data streams
with an eye toward trait-based analyses. So far, only a few
studies have quantified traits automatically and have generally
focused on size estimates (Álvarez-Ellacuría et al. 2020).

The ML and computer vision methods we have identified
could be adapted to estimate the number of parasites per fish
in salmon farms (via object detection), the bleaching of coral
reefs (via segmentation or deep regression; Nielsen
et al. 2018), or the cell deformations of benthic diatoms in
response to pollutants (with keypoint estimation or deep
regression). Conversely, plankton studies could benefit from
approaches developed to automatically analyze images of
other aquatic organisms (e.g., Beyan and Browman 2020 and
references therein). Scientists studying benthic mac-
roorganisms, fish, or marine mammals with images will have
unique sets of technological challenges associated with auto-
mating analysis (e.g., complex backgrounds for in situ benthic
images or overlapping targets when recording pelagic fish).
Despite such difficulties, functional traits could still be esti-
mated from images and feed multicompartment studies
(Martini et al. 2021). The eventual combination of image
datasets to cover the wide range of organism size and habitat
will likely require both careful intercalibration and new math-
ematical methods.

Conclusion
As a final note, we would like to advocate for two goals that

we should pursue as a community: (1) more open and efficient
sharing of trait-annotated datasets, and (2) development of
educational programs at the interface of computer science and
ecology. The first goal is obvious and one that has been dis-
cussed widely. The benefits of open-access annotations are
manifest: combining large volumes of publicly available
labeled data with fine-tuning procedures could speed testing
and deployment of new techniques. For instance, the Kaggle
challenge on plankton image classification (https://kaggle.
com/c/datasciencebowl/) has promoted the use of CNNs. This
stressed how beneficial data sharing can be, since the prob-
lems that ecologists are facing with their images (e.g., taking
object size into account or dealing with unbalanced datasets)
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can be challenging for data scientists as well. Therefore,
aquatic ecologists should be encouraged to share or continue
sharing their image data and models. The second goal will
require more time and effort, but will likewise benefit the field
as a whole. Most universities do not offer interdisciplinary
tracks for students to pursue ML for ecological data. The estab-
lishment of dedicated programs that combine computer
vision, ML, and aquatic ecology training should be promoted.
The goal of such initiatives should not be to make ecologists
into ML experts nor vice versa; there are too many complexi-
ties inherent in both fields for that to be a reasonable expecta-
tion. Instead, such educational initiatives should seek to ease
the impedance mismatch between practitioners in both areas.
Offering degrees and certificates at this interface would better
prepare future scientists, establish a talent pool of creative
practitioners, and encourage the sustained dialogue necessary
to build fruitful collaborations at this rich interdisciplinary
juncture.
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