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Abstract
The rise of in situ plankton imaging systems, particularly high-volume imagers such as the In Situ Ichthyo-

plankton Imaging System, has increased the need for fast processing and accurate classification tools that can
identify a high diversity of organisms and nonliving particles of biological origin. Previous methods for auto-
mated classification have yielded moderate results that either can resolve few groups at high accuracy or many
groups at relatively low accuracy. However, with the advent of new deep learning tools such as convolutional
neural networks (CNNs), the automated identification of plankton images can be vastly improved. Here, we
describe an image processing procedure that includes preprocessing, segmentation, classification, and postpro-
cessing for the accurate identification of 108 classes of plankton using spatially sparse CNNs. Following a filter-
ing process to remove images with low classification scores, a fully random evaluation of the classification
showed that average precision was 84% and recall was 40% for all groups. Reliably classifying rare biological
classes was difficult, so after excluding the 12 rarest taxa, classification accuracy for the remaining biological
groups became > 90%. This method provides proof of concept for the effectiveness of an automated classifica-
tion scheme using deep-learning methods, which can be applied to a range of plankton or biological imaging
systems, with the eventual application in a variety of ecological monitoring and fisheries management contexts.

Much of plankton ecology has been focused upon ques-
tions surrounding the identity, quantity, and spatial-temporal
variability of planktonic organisms in aquatic systems, which
has historically been addressed by various net-based sampling
systems (Wiebe and Benfield 2003). Although many advanced
nets were designed to overcome limitations in horizontal or
vertical resolution in sampling, the emergence of plankton
imaging systems represents a significant advancement for
plankton ecology. Current imaging systems are able to quan-
tify organisms within fine spatial and temporal scales, with
some systems imaging organisms undisturbed and in their
natural environment [e.g., Video Plankton Recorder (VPR;
Davis et al. 1992), Shadow Image Particle Profiling Evaluation
Recorder (SIPPER; Samson et al. 2001), ZOOplankton

VISualization and Imaging System (ZOOVIS; Benfield
et al. 2003), In Situ Ichthyoplankton Imaging System (ISIIS;
Cowen and Guigand 2008), Underwater Vision Profiler
5 (UVP5; Picheral et al. 2010); Note that the SIPPER samples
via an intake tube, and is thus not a truly undisturbed sam-
pler]. Research using plankton imaging systems has led to new
insights into the relationships between species and their fine-
scale environment (e.g., Benfield et al. 2000; Ashjian
et al. 2001), with implications ranging from fine-scale aggrega-
tion dynamics (Luo et al. 2014), N2 fixation (Davis and McGil-
licuddy 2006), predator-prey interactions (Greer et al. 2013),
carbon export (Petrik et al. 2013), and global plankton bio-
mass estimates (Biard et al. 2016).

Though in situ plankton imaging systems were developed
with a goal of reducing processing time (very lengthy for phys-
ical net samples, which requires sorting and expert identifica-
tion), in reality, analyzing plankton images currently still
requires extensive and time-consuming manual classification
and expert taxonomic knowledge. The tradeoff is: human
operators’ time vs. classification accuracy vs. taxonomic
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resolution. Manual processing time is typically not reported in
papers, but as an example, the manual analysis of 50+ taxa of
gelatinous zooplankton within 5500 m3 of water, imaged in
750,000 frames (13.5 inch square frames with 66 μm pixel res-
olution; each frame with up to 50 organisms) required the
equivalent of three full man-years (Luo et al. 2014). Classifica-
tion of preprocessed image segments is slightly faster; Faillet-
taz et al. (2016) reported a manual classification rate of 10,000
images d−1 into 10–15 biotic and abiotic classes, but a single
multiday cruise can easily generate upward of 50 million
image segments. In general, automated classification efforts
currently consist of identifying small numbers of classes [five
to seven classes (Davis et al. 2004; Hu and Davis 2006), and
three classes (Bi et al. 2015)], but even so, few reach an accept-
able benchmark of classification accuracy, commonly set at
67–83% (Culverhouse et al. 2003; Hu and Davis 2005). Alter-
natively, computer-assisted classification is generally used to
achieve higher accuracies, which consists of a computer gener-
ated set of automated classifications followed by fully validat-
ing all images manually (Gorsky et al. 2010; Ohman
et al. 2012). Consequently, it is still very difficult and time-
consuming to extract high-accuracy data on many types of
plankton, particularly in highly diverse areas, which limits the
utility of many underwater imaging systems.

The issues with classification accuracy and speed have been
pronounced with ISIIS (Cowen and Guigand 2008), which is a
high resolution, large volume imager designed for sampling
mesozooplankton. It typically images at a rate of
150–185 L s−1, depending on tow speed. Compared with
other plankton imaging systems (VPR: 10–17 mL s−1, ZOOVIS:
3.6 L s−1, SIPPER: 9.2 L s−1, UVP5: 8–20 L s−1), ISIIS records at
10–1000 times the sampling volume, which has allowed for
studies on rare organisms such as larval fish (Cowen
et al. 2013) or large gelatinous zooplankton (McClatchie
et al. 2012; Luo et al. 2014). Particularly in subtropical zones
such as the northern Gulf of Mexico, ISIIS can simultaneously
record in-focus, clear images of hundreds of species, ranging
from protists, diatom chains, and copepods, to shrimps, larval
fish, and medusae. Therefore, in order to properly classify
organisms within ISIIS images, a classifier that could handle
not just a few (< 10) classes, but many classes (e.g., 30–150) is
necessary.

Methods for the automated analysis of zooplankton images
had early beginnings in statistical approaches, e.g., discriminant
analysis (Jeffries et al. 1980, 1984), but quickly progressed to
using machine learning techniques such as artificial neural net-
works (ANNs; Simpson et al. 1992; Culverhouse et al. 1996). Cul-
verhouse et al. (1996) designed their ANN system explicitly for
dinoflagellates, and were able to identify species with ca. 72%
accuracy, which was comparable to human classification
(Culverhouse et al. 2003). For a slightly broader range of taxo-
nomic classes (five to seven classes of phytoplankton and zoo-
plankton), an ANN-type network was combined with a support
vector machine (SVM) in a dual classification method for VPR

images, resulting in classification precision rates between 23%
and 95% when tested on the original training set (Hu and Davis
2005, 2006). For images from the UVP5, an extensive review of
different classifiers (including ANN and SVM classifiers) resulted
in the adoption of a Random Forest (RF) algorithm,which consis-
tently performed the best, even superseding the SVM classifier
(ZooProcess with PkID; Gorsky et al. 2010; Gasparini and Antajan
2013). However, even with the success of the RF algorithm, most
UVP5 images are still fully validated by humanoperators, though
there have been some recent efforts toward decreasing the
amount of manual labor required through the use of filtering
methods (Faillettaz et al. 2016). In recent years, SVMs have
continued to be used, for systems such as the SIPPER (active
learning with an SVM reduces human labeling efforts; Luo
et al. 2005) and ZOOVIS (SVM classifier using three classes with
> 80% precision; Bi et al. 2015), while other groups have con-
tinued on with RF methods, sometimes with many more clas-
ses (47 classes, Laney and Sosik 2014; 114 classes, Schmid
et al. 2016). Nonetheless, for all of these classification algo-
rithms, a highly specific set of premeasured features was crucial
for successfully training the classifier; this set of extracted fea-
tures could not dynamically change, nor be automatically
determined by the classifier itself. Furthermore, while the
accepted benchmark for plankton classification accuracy
(67–83%, Culverhouse et al. 2003) had been met in many clas-
ses by different classifiers, for biological questions particularly
surrounding rare or cryptic species, a high amount of error is
often untenable.

Here, we present the results of a process to develop an auto-
mated classification algorithm for ISIIS images using convolu-
tional neural networks (CNNs), a relatively new class of
methods that has revolutionized the computer vision field in
recent years (Krizhevsky et al. 2012; LeCun et al. 2015), and
which falls within the general category known as deep learning.
As opposed to conventional machine-learning techniques such
as ANNs, RF, and SVMs, deep-learning tools do not require
extensive domain expertise (e.g., plankton imaging) and the
careful engineering of feature extractors for classification.
Instead, they are able to process natural data in their raw form,
and automatically discover the representations that are best
suited for classification. We describe a whole image processing
“pipeline,” which includes preprocessing, segmentation, classi-
fication, and postprocessing (Fig. 2). Then, as a proof of con-
cept, we apply it to a set of ISIIS images collected in the
northern Gulf of Mexico. While the described method is highly
tuned to images collected by a particular instrument, CNNs in
general (as well as the machine learning competition we ran to
generate this solution) are highly versatile, and can be applied
to many types of images within the biological sciences.

Methods
Description of instrument

ISIIS (Cowen and Guigand 2008) utilizes shadowgraph
imaging with a line-scan camera to capture silhouette images
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of particles in a sampled parcel of water. This backlighting
technique, with early application by Arnold and Nuttall-
Smith (1974) and Ortner et al. (1979, 1981), allows for the
fine taxonomic resolution of transparent organisms
(e.g., gelatinous zooplankton) and the coarse taxonomic res-
olution of small, opaque organisms (e.g., copepods). The
camera used is a 2048-pixel line-scan camera that images
over a 13 × 13-cm field of view and 50-cm depth of field,
with a resultant 66-μm pixel resolution. The output of the
imaging is recorded as a continuous image that is parsed into
square frames (2048 × 2048 pixels) at 17 frames s−1. While
sampling, we target a ship speed of 2.5 m s−1, which results
in an ISIIS sampling rate of 169 L s−1. However, in practice,
this sampling rate can vary from 150 L s−1 to 185 L s−1 with
corresponding ship speeds of 2.25–2.75 m s−1. The recorded
data are ported to the surface via a fiber-optic wire, time-
stamped, and saved onto a ship-based computer or raid
array.

Field sampling
During July–August 2011, ISIIS was deployed over eight,

6-h transects during two oceanographic cruises onboard the
NOAA ship McArthur II in the northern Gulf of Mexico
(Fig. 1). The sampling plan was designed to capture images of
species present during the day and night, at various locations
and depths, and over multiple months. ISIIS sampled in
tow-yo undulations from the surface to 130 m depth at the
offshore sites, and from the surface to 40–60 m depth at the
inshore sites.

Image preprocessing
ISIIS uses a line-scanning camera with a single row of

pixels, each with its own unique light sensitivity characteris-
tics; consequently, raw ISIIS images have a slight nonunifor-
mity in gray-level across the image, despite the uniform
distribution of incoming light. Furthermore, any dust or parti-
cles on the lens appears as vertical lines in the raw, square
frame (Fig. 3a). These lines and image nonuniformities are cor-
rected in a radiometric calibration called “flat-fielding” in
which we calculate a calibration frame (Fig. 3b) that is sub-
tracted from the raw frame. The calibration is calculated per
frame; since the objects of interest occupied only a small
amount of the frame (based on initial tests, we assumed it to
be < 20%), we ignored those outliers and calculated a column-
averaged frame for calibration. Thus, the resultant frame after
flat-fielding is devoid of vertical nonuniformities that could
bias the segmentation and classification (Fig. 3c).

Next, in order to equalize the image histogram, we normal-
ized the contrast within each frame using the OpenCV 2.4
“equalizeHist” command (https://docs.opencv.org/2.4/
modules/imgproc/doc/histograms.html). The histogram nor-
malized frame allowed for the better detection of regions of
interest (ROIs) for segmentation (Supporting Information
Fig. S1).

Finally, due to the fact that sampling included coastal
waters with high turbidity (from the Mississippi River plume),
we calculated a signal-to-noise (SNR) ratio for each frame in
order to filter out the highly noisy frames captured in turbid
waters. The SNR was computed by first calculating a

Fig. 1. Sampling sites in the northern Gulf of Mexico, spanning 2 months (July and August 2011), in nearshore and offshore sites, occurring during eve-
ning (solid lines) or morning (dashed lines) times. Each transect was sampled over 6 h, and consisted of tow-yo undulations, from the surface to a maxi-
mum of 50 m for the inshore sites and 130 m for the offshore sites.
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cleaned-up frame, or the “signal-frame,” which was simply
done by applying a 3 × 3 median filter to the histogram
normalized frame. The difference between the histogram
normalized frame and the signal frame was then considered
the “noise-frame.” SNR was then calculated as the log of the
ratio between vector norm (l2-norm) values of the two
images:

SNR¼20log10
Fsignal
�� ��
Fnoisej j

� �
ð1Þ

where Fsignal is the signal-frame and Fnoise is the noise-frame;
and the vector norm values was calculated using the OpenCV
2.4 “norm” function, and is defined as:

Xj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1
xkj j2

q
,whereX¼ x1,x2,x3,…,xn½ � ð2Þ

After calculating the SNR on a set of representative images,
we found a clear difference in SNR values between frames cap-
tured from turbid vs. not turbid waters (Supporting Information

Fig. S2). Thus, we used a threshold cutoff of SNR = 25 to discard
extremely noisy images, which were approximately 26% of all
frames originally captured. Note that through earlier efforts, we
have found that images from highly turbid waters often require
manual identification of images, so we sought to limit this
study to images captured from more typically oceanic waters.
This exclusion of noisy images should be considered an effect
of the sampling environment, rather than the image processing
method, as images collected in oceanic waters rarely had
high SNRs.

Segmentation
Preprocessed frames were then segmented using the ISIIS

image segmentation software (Tsechpenakis et al. 2007, 2008;
Iyer 2012; http://cs.iupui.edu/~gavriil/vital/MVISIIS). The seg-
mentation software uses an unsupervised machine learning
technique, K-harmonic means clustering, to detect ROIs from
the raw images. Iyer (2012) tested six different clustering
methods for segmentation (K-means, iterative K-means, fuzzy
C-means, Isodata, Spectral algorithm, and K-harmonic means),

Fig. 2. Flowchart overview of the processing steps. Raw frames were first flat-fielded and corrected, then segmented into smaller image segments. A
training set was generated to train the image classifier, which was a convolutional neural net (CNN). The full dataset of ~ 24M images were classified.
Afterward, a random subset of 75k images were spot-checked (manually validated) to estimate the accuracy of the classifier. Separately, a 43k-test set
was also validated and used to set probability thresholds, which separated the classified dataset into low-probability (discarded into “unknown”) and
high-probability images (retained). CMs were generated to evaluate classifier performance at each step.

Fig. 3. An example of the flat-fielding process, showing the raw image (a), the flat-field frame that was removed from the raw image (b), and the cor-
rected frame (c).
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and chose the K-harmonic means method because it achieved
the highest accuracy rates (95%) at relatively fast speeds and
was easily implemented for parallel processing. In our imple-
mentation, we found that the segmentation process was fur-
ther improved after the addition of the image histogram
equalization step (see “Image preprocessing” section). Finally,
the segmented images were given a unique name that refers to
its time-stamp and location within the original frame. This
naming convention allows for each image to be quickly associ-
ated with neighboring images, the original frame, shipboard
GPS, and the environmental data recorded by the instrument.

Automated image classification
Convolutional neural networks
Segmented images were classified using convolutional

(or deep) neural networks (CNNs), a method that is able to
process images directly and automatically discover the charac-
teristics within the images that are best suited for classifica-
tion. Deep-neural networks make use of the fact that natural
images can be analyzed in a hierarchical fashion, with lower-
level features organizing to form higher-level features
(e.g., pixels to edges, edges to body parts, and body parts into
organisms), and have been used in numerous applications
from speech and face recognition (Lawrence et al. 1997; Hin-
ton et al. 2012) to predictions of galaxy morphology
(Dieleman et al. 2015). The four key ideas that characterize
CNNs (local connections, shared weights, pooling, and the
use of many layers) facilitate minimal preprocessing and
require no prior knowledge in designing features for classifica-
tion; this represents a significant advance compared with tra-
ditional machine learning methods such as ANNs and SVMs
(LeCun et al. 2015).

Spatially sparse convolutional neural networks
(SparseConvNets) were initially designed for the recognition
of Chinese handwriting. SparseConvNets recognize that the
background of an image often occupies many pixels and not
processing them allows the CNN approach to be applied more
efficiently, with less computational cost (Graham 2014).
Plankton images can also be considered “sparse images,” as
the majority of the image, even in segmented images, is back-
ground. The actual particle or organism occupies a relatively
small percentage of the pixels in the image. Thus, not proces-
sing the background (white) pixels results in a much faster
classification process.

An application of SparseConvNets with Fractional Max-
Pooling (Graham 2015) was initially developed as part of the
Poisson Process team for the 2015 National Data Science Bowl
competition (3-month machine learning competition to clas-
sify ca. 60,000 ISIIS plankton images within 121 categories;
dataset available at Cowen et al. 2015, see competition solu-
tion at: www.kaggle.com/c/datasciencebowl/forums/t/13158/
poisson-process-competition-report-and-code/). For the com-
petition, a number of similar models were used to generate an

ensemble solution. We chose the best single model from team
Poisson Process and made small modifications to improve
overall speed with little apparent changes in accuracy.

As opposed to ANNs, which process images as vectors,
CNNs process images as three-dimensional arrays. Images are
represented in a computer as three-dimensional arrays with
size N × N × C, where the first two dimensions (N × N) are
spatial dimensions, representing the number of pixels in the
image, and the last dimension (C) is the number of color-
channels. In our case, the input image has dimensions of N ×
N × 1, as there is only one color channel in monochrome
images (RGB color images have C = 3). However, the
C dimension does not necessarily have to represent only true
colors, but rather can be generalized and expanded to repre-
sent abstract “features” of an image. On a basic level, convolu-
tional networks work by going through an iterative process of
collecting features and appending them as two-dimensional
slices to the C dimension. These additional abstract color-
channels are “value-added” images, as they represent increas-
ingly higher-level features, as the algorithm progresses from
the bottom of the network to the top. Examples of features
that would be detected at the bottom of the network include
edges or combinations of edges, and at the top of the network,
these features would be something biologically relevant, such
as tails or antennae. These collections of features are con-
structed by a numerical optimization technique which
involves iteratively showing the network training images from
which it can learn discriminative features useful for
classification.

Our network is constructed as a sequence of two alternating
types of layers, termed convolutional and pooling layers. Con-
volutional layers form the main building block for CNNs, as
they detect local combinations of features. Pooling layers oper-
ate by merging semantically similar features into one (for a
general description, please see LeCun et al. 2015). The net-
work has 13 convolutional layers in total, separated by
12 pooling layers. The n-th convolutional layer looks at over-
lapping 2 × 2 pixel regions of the image below, producing an
output image with 32*n color-channels. The number of color-
channels increases as we rise through the network in the
expectation that we will produce an increasingly rich descrip-
tion of the contents of the image. The interleaved pooling
layers reduce the spatial size of the input image, but leave the
number of color-channels unchanged. We use fractional max-

pooling with scaling factor of 1=
ffiffiffi
2

p
. The scaling is multiplica-

tive, so the image shrinks exponentially as we climb the net-
work. This reduction in resolution offsets the increase in the
number of color-channels, ensuring computational feasibility.
After the last convolutional layer, we calculate the average of
each color-channel over the spatial dimensions. We then
perform multinomial logistic regression on the set of
color-channel features to predict the class of the image. We
used the SparseConvNet (https://github.com/btgraham/
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Fig. 4. (a, b) Example images from each of the 108 classes within the learning set. Classes [and corresponding groups] are: (1) acantharia protist
1, (2) acantharia protist 2 [protist]; (3) appendicularian sinusoidal tail, (4) appendicularian slight curve, (5) appendicularian straight [appendicularian];
(6) artifact 1, (7) artifact 2, (8) bubbles [artifact]; (9) chaetognath c-curved, (10) chaetognath curved, (11) chaetognath dark, (12) chaetognath straight
[chaetognath]; (13) copepod calanoid, (14) copepod calanoid eggs, (15) copepod calanoid eucalanus, (16) copepod calanoid flatheads, (17) copepod
calanoid frilly antennae, (18) copepod calanoid large, (19) copepod calanoid small long-antennae [copepod calanoid]; (20) copepod cyclopoid copilia
[copepod copilia]; (21) copepod cyclopoid oithona, (22) copepod cyclopoid oithona eggs [copepod oithona]; (23) copepod escape [copepod calanoid];
(24) ctenophore beroida [ctenophore beroida]; (25) ctenophore cestida [ctenophore cestida]; (26) ctenophore cydippid [ctenophore cydippid]; (27) cteno-
phore lobata mnemiopsis, (28) ctenophore lobata ocyropsis, (29) ctenophore lobata type 1 [ctenophore lobata]; (30) detritus sparse blob, (31) detritus
casings, (32) detritus dark, (33) detritus filamentous [detritus]; (34) diatom chain string, (35) diatom chain tube [diatom chain]; (36) echinoderm
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SparseConvNet) software package, which takes advantage of
the sparsity of the images to reduce the computational bur-
den, to train the CNN.

Network training
Images (n=42,564) were manually sorted in 108 classes to

serve as a training set. We used 100+ classes to accurately rep-
resent the taxonomic diversity in the data (Fig. 4). Initially, we
started with a training set that was a subset of the data (not
shown), which represented the actual proportions of objects
in each class, but refined the training set by adding in rare
classes. Since we were most interested in rarer groups
(e.g., larval fish, jellies, etc.), they were inflated to provide a
greater number of representative samples for the training set.
The total number of images in each class of the training set is
provided in Supporting Information Table S1.

In addition, at each “epoch” (i.e., training cycle), Sparse-
ConvNet picks examples from the training set and performs
data augmentation (randomly rotates, skews, and scales each
image), hence creating subtle variations of the original shapes
and simulating new training examples. This procedure is fairly
common in CNNs and helps to generalize a model based on a
limited set of examples.

We trained for 150 epochs, as this represented the point at
which the error rate plateaued at a minimum value
(14.9–15.1%). Using a g2.2xlarge instance on the Amazon
elastic computing cloud (one NVIDIA GPU with 1536 CUDA
cores), training 150 epochs took ca. 24 h.

Model predictions
To make the prediction robust, each of the 23.4M images

in the full data set was passed through the fitted network
24 times, each time with different data augmentation parame-
ters. The probabilities for each object to belong to each class,
predicted by the model, were averaged over the 24 predictions,
the maximum was found, and the corresponding class was
considered as the predicted class. Total prediction time was
165 machine hours (though < 36 actual hours, as we used five
GPU instances in parallel).

Classification groupings
The 108 original classes in the training set were mapped

onto 37 broader groups, which represented taxonomic or
functional groupings that were more relevant for ecological
analyses (Fig. 4; Supporting Information Table S2). For exam-
ple, many of the original classes were created for automated
image classification purposes, with the distinctions between
classes only morphological (e.g., straight vs. curved appendi-
cularians) or due to an imaging or segmentation artifact
(e.g., cropped bells and tentacles). Others were created to dis-
tinguish between different forms within a diverse class
(e.g., detritus) that would otherwise pollute many other clas-
ses. Last, some taxonomic classes were grouped together for
filtering purposes and further analyses (e.g., the fish groups).

Model performance
Confusion matrices (CMs) are a tool for quantifying classi-

fier accuracy (e.g., Hu and Davis 2005; Bi et al. 2015). The cal-
culated CM statistics included three values and three rates,
calculated separately for each class i: values were numbers of
true positives (TPi), false positives (FPi, type I error), and false
negatives (FNi, type II error). The rates calculated were preci-
sion (Pi, Eq. 3), recall (Ri, Eq. 4), and the F1-score, which is the
harmonic mean of the precision and recall rates (F1i, Eq. 5).
For a given class, precision quantifies the “purity” of the pre-
diction and recall quantifies the “completeness” of the
prediction.

Pi ¼TPi= TPiþFPið Þ ð3Þ
Ri ¼TPi= TPiþFNið Þ ð4Þ

Fli ¼2×Pi ×Ri= PiþRið Þ ð5Þ

A self-prediction of the training set and the associated CM
represent the theoretical maximum of the classifier perfor-
mance. It was computed to give a benchmark for determining
which classes had naturally high variability and which ones
were relatively homogenous (Supporting Information Table S1).

brachiolaria, (37) echinoderm pluteus [echinoderm]; (38) ephyra [ephyra]; (39) fecal pellets [detritus]; (40) fish bregmacerotidae, (41) fish carangidae,
(42) fish ceratioidei, (43) fish echeneidae, (44) fish engraulidae, (45) fish gobiidae, (46) fish gonostomatidae, (47) fish labroidei, (48) fish leptocephali,
(49) fish microdesmidae, (50) fish myctophidae, (51) fish ophidiidae, (52) fish phosichthyidae, (53) fish pleuronectiformes, (54) fish scombridae, (55) fish
serranidae, (56) fish synodontidae, (57) fish trichiuridae, (58) fish xyrichtys [fish]; (59) hydromedusae rhopalonematidae [hydro rhopalonematidae],
(60) hydromedusae eucheilota, (61) hydromedusae haliscera [hydro other]; (62) hydromedusa liriope tetraphylla, (63) hydromedusa liriope cut-off-bell
[hydro liriope]; (64) hydromedusae narcomedusae other [hydro narcomedusae]; (65) hydromedusae rhopalonema 2 [hydro rhopalonematidae], (66) hydro-
medusae solmaris rhodoloma, (67) hydromedusae solmaris spp, (68) hydromedusae solmundella, (69) hydromedusae tiny solmaris [hydro narcomedusae];
(70) hydromedusae type 1 small bell, (71) hydromedusae type 2, (72) hydromedusae type 3 [hydro other]; (73) medusa pelagia noctiluca [medusa pela-
gia]; (74) medusa tentacles [hydro other]; (75) polychaete type 1, (76) polychaete type 2, (77) polychaete type 3 [polychaete worm]; (78) protist noctiluca,
(79) protist radiolarian, (80) protist radiolarian clear [protist]; (81) pteropod type 1, (82) pteropod type 2, (83) pteropod type 3 [pteropod]; (84) radiolarian
chain [radiolarian chain]; (85) shrimp caridean, (86) shrimp caridean small [shrimp other]; (87) shrimp euphausiid, (88) shrimp euphausiid escape posture
[shrimp euphausiid]; (89) shrimp lucifer [shrimp lucifer]; (90) shrimp mysid [shrimp other]; (91) shrimp sergestidae [shrimp sergestidae]; (92) siphonophore
ablyidae [siph ablyidae]; (93) siphonophore calycophoran pointy head no-stem, (94) siphonophore calycophoran pointy head with-stem, (95) siphono-
phore calycophoran round head [siph calycophoran]; (96) siphonophore lilyopsis rosea [siph lilyopsis rosea]; (97) siphonophore physonect [siph physonect];
(98) stomatopods [stomatopods]; (99) tornaria acorn worm larvae [tornaria]; (100) trichodesmium bow-tie, (101) trichodesmium tuft, (102) trichodes-
mium puff [trichdodesmium]; (103) tunicate doliolid, (104) tunicate doliolid budding, (105) tunicate salp, (106) tunicate salp chains [tunicates]; (107)
unknown dark blob [detritus]; (108) zoea [zoea].
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To evaluate the classification success on the full dataset, we
performed spot-checks: 75,000 predicted images were picked
randomly (0.30% of the total dataset) and their identification
was manually validated. The corresponding CM is shown in
Supporting Information Table S2 (see column “Without prob-
ability filtering”).

Probability filtering
In the full dataset, images of organisms spanned the

range in terms of quality: small (e.g., early life stage) to large
(e.g., adult), blurry to clear, oriented toward, away, or to the
side of the camera, etc. Thus, the images that were more dif-
ficult to predict, or less archetypal often were associated
with a low prediction score. The prediction score is an out-
put of any classification algorithm: for each candidate
image, the algorithm computes a score (often a probability)
associated with every category in the training set. Classifica-
tion is then just a matter of picking the maximum score.
However, for difficult to identify objects that could fit in
many classes, even the maximum score can be low, reflect-
ing a low confidence in the classification. Therefore, we
used this score to filter classified images into “high”

vs. “low” likelihood of correct classification using a thresh-
old value set for each class. Faillettaz et al. (2016) first dem-
onstrated this approach, showing that the removal of “low-
confidence images” (in their case, over 70% of their original
dataset) still allowed for the prediction of true spatial distri-
butions of many taxa.

In the present study, we determined the appropriate
threshold values for each class by predicting a new, indepen-
dent, 43,000-member test set. All images in this test set were
manually identified, which allowed us to detect prediction
errors. For each class, we set the threshold value to be the clas-
sification score above which 95% of images were correctly clas-
sified into the corresponding group (as opposed to the class
itself ). Groups were used because many of the 108 classes
were separated based on morphological distinctions with little
ecological relevance (e.g., “chaetognaths curved” vs “chaeto-
gnaths straight”). The 95% level, which resulted in 29.6% of
images discarded (though individual classes varied, Supporting
Information Table S3), was chosen as a compromise between
improving classification accuracy and retaining enough
images for ecological analyses. As a comparison, if the thresh-
olds were set at the 90% level, then only 19% of images would

Fig. 5. Confusion matrix on the 75,000 random images, classified into 108 classes, and then grouped into 38 groups (including unknowns). Low-
probability images were moved into Unknowns. Rows show computer-predicted classes, and columns show human-validated classes. Color indicates pro-
portion of images sorted from computer-predicted classes into manually verified classes, scaled by row. Gray rows indicate rare categories where no (high
probability) images were randomly selected for validation.
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be cut, but at 99% level, then 63% of all images would be
discarded.

The discarded, “low-confidence images,” were put into the
“unknown” category. Since this affected some of the 75,000
randomly selected images used to compute the confusion
matrix, a postfiltering confusion matrix was then recalculated.
The differences between the CM stats before vs. after probabil-
ity filtering are shown in Supporting Information Table S2, and
the section “With probability filtering” gives the CM for the

final processed dataset, which can be used for future ecological
studies.

Results
A total of 2.4 million raw ISIIS frames (nearly 40 h of imag-

ing, 10 TB data) were collected from eight transects in the
northern Gulf of Mexico. The raw ISIIS frames were segmented
into 23.4 million images (27 GB), and classified into all

Table 1. Comparison of precision, recall, and F1-ratio for the prediction of the training set compared to the full dataset (from the ran-
dom 75,000 spot-checks, after applying the filtering thresholds), calculated at the group level. Gray rows indicate rare groups with < 25
images in the spot-checked set.

Class

Training set Full dataset

Precision Recall F1 Precision Recall F1

appendicularian 97.5 99.2 98.3 90 39.1 54.5

artifact 94.6 96.8 95.7 96.5 90.5 93.4

chaetognath 98.7 99 98.8 92.7 46.9 62.3

copepod_calanoid 98.3 99.2 98.7 98.8 62.4 76.5

copepod_copilia 97.7 97.7 97.7 60 75 66.7

copepod_oithona 97.5 99.8 98.6 100 57.6 73.1

ctenophore_beroida 98.8 89.4 93.9 100 20 33.3

ctenophore_cestida 100 99.3 99.6 100 33.3 50

ctenophore_cydippid 100 83.3 90.9 100 3.1 6

ctenophore_lobata 99.3 98.7 99 100 14.3 25

detritus 97.4 92.6 94.9 98.2 55.3 70.8

diatom_chain 97.6 98 97.8 92.3 78.6 84.9

echinoderm 98.2 98.6 98.4 100 16.5 28.3

ephyra 100 100 100 52.8 47.5 50

fish 99.5 99.8 99.6 76.3 38.5 51.2

hydro_liriope 93.5 96.1 94.8 100 21.4 35.3

hydro_narcomedusae 97.4 95.5 96.4 98.8 23 37.3

hydro_other 88.8 92.3 90.5 79.7 15 25.2

hydro_rhopalonematidae 95.4 97 96.2 96.7 33.1 49.3

medusa_pelagia 98.8 95.3 97 NA 0 NA

polychaete_worm 99 99 99 90 45.8 60.7

protist 99.1 99.6 99.3 93.9 53.7 68.3

pteropod 99 94.6 96.8 55.6 14.7 23.3

radiolarian_chain 100 100 100 100 77.8 87.5

shrimp_euphausiid 95.8 98.8 97.3 94.1 69.6 80

shrimp_lucifer 93.1 94.7 93.9 100 32.5 49.1

shrimp_other 97.4 91.7 94.5 86.2 12.3 21.5

shrimp_sergestidae 92.1 89.4 90.7 90 50 64.3

siph_ablyidae 96.7 97.8 97.2 87.5 21.9 35

siph_calycophoran 95.9 95.6 95.7 98.6 24.6 39.4

siph_lilyopsis_rosea 92 89.6 90.8 100 44.4 61.5

siph_physonect 95 80 86.9 NA 0 NA

stomatopods 95.3 95.3 95.3 13.3 66.7 22.2

tornaria 98.4 98.4 98.4 50 25 33.3

trichodesmium 92.3 95.5 93.9 93.2 29.5 44.8

tunicates 97.8 99.2 98.5 95.5 50.9 66.4

zoea 97.9 100 98.9 1.5 92.7 3
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108 categories (Supporting Information Table S2). After filter-
ing, 64.3% of the images were retained and 35.7% discarded.
Aside from the detritus and artifact images, there were 1.62
million images of phytoplankton and protists and 1.37 mil-
lion images of mesozooplankton.

Training set prediction: Accuracy benchmarks
Overall, the F1-score (the harmonic mean between preci-

sion and recall) for all classes was 88.1, with 67% with a
F1-score over 90, and 83% with a F1 score over 80. The hardest
classes to predict were the fish classes, with a mean F1 score of
70.7 (e.g., myctophid fishes were often confused for other
types of fishes), and the easiest classes to predict included the
protists (mean F1 of 98.0), cyclopoid copepods (mean F1 of
96.1), and chaetognath classes (mean F1 of 93.4) (Supporting
Information Table S1). At the group level, the F1-scores
increase, such that the lowest was 85.6 (physonect siphono-
phores), and 70% had F1-scores of 95 or above (Table 1).

Image filtering and CMs
In total, filtering removed 30% of all images, though this

percentage differed by category. Out of 108 categories, 26 were
well-predicted (over 60% retained after filtering), including
the diatom chains, chaetognaths, dark detritus, protists, dolio-
lids, and three calanoid copepod classes. Many of these 26 clas-
ses also fell within the top quarter in terms of numerical
abundance (10 classes, containing 18.1 out of 23.4 million
images). In particular, the main artifact class (imaging arti-
facts, as opposed to detritus), which comprised over 8.2 mil-
lion images, or 35% of the total, were well-predicted, and over
93% were retained. However, the well-predicted classes were
not only the common classes, since some of the rare but mor-
phologically monotypic (e.g., the cestid ctenophores and goby
fishes) also performed very well. In contrast, 22 classes were
very heavily filtered, where less than 10% were retained. These
classes included six (out of 14) hydromedusae, five (out of 19)
fish, two polychaete worms, two siphonophores, one copepod
and one shrimp, and tended to be the less common but mor-
phologically diverse classes (Fig. 5, Supporting Information
Table S3).

Results from the 75,000 random spot-checks showed that
filtering improved the mean classification precision rate at the
group level by 33% points, from 53% to 84% precision
(Supporting Information Table S2). If only the biological
groups were considered (thus excluding artifacts, detritus, and
unknown, which was nearly 80% of the dataset), this increase
was just slightly greater, from 51% to 87% precision. Twelve
of the biological groups had less than 25 randomly drawn
images (Supporting Information Table S2, also marked in gray
in Table 1); these groups were very rare, each representing less
than 0.12% of the total biological data. Excluding the rare bio-
logical groups, the precision rate after filtering was 90.7%.

Naturally, using the filtering thresholds decreased the total
recall rate, by 23 percentage points, from 63% to 40%. For the

nonrare biological groups (n = 23), the decrease was greater
(31 points), but final recall rate was similar (39%). However,
the F1-score, which is the harmonic mean of the precision rate
and recall rate, only increased slightly, from 49% to 51%.

The final classification comparison was conducted between
the (postfiltering) classifier and the training set, which repre-
sents the difference between a full dataset classification and
the theoretical maximum for a classifier (Table 1). On the full
dataset, classification precision was actually close to or even
exceeded that of the training set, which was possible because
of the application of the filtering thresholds. Despite the corre-
sponding decrease in the recall rate, a comparison of F1-scores
showed that a few of the biological groups had a less than
10-point difference (Oithona copepods, sergestid shrimp, and
ablyid siphonophores). Groups that were less common, or had
a lot of natural variability, such as other shrimp, pteropods,
and cydippid ctenophores, showed a much greater difference,
of 70–80 points, which was largely due to low recall rates post-
filtering. However, the average difference in F1-scores for the
(nonrare) biological groups was 40%, representing a moderate
difference between the final classifier and the training set.

Discussion
We demonstrate the successful application of an image pro-

cessing procedure, using a deep learning CNN, to classify a
~ 40 h, 10 TB in situ plankton imaging dataset containing
25 million image segments into 108 classes. After applying a
filtering threshold on the classification probabilities, and
grouping the classes into 37 taxonomically and functionally
meaningful groups, the average classifier precision on nonrare
biological groups (n = 23) was 90.7%, which is higher than
any previous attempt on high-sampling volume, in situ plank-
ton images.

Since Culverhouse et al. (2003) published a finding that
trained personnel are only able to achieve 67–83% self-
consistency on an expert plankton classification task, that
range has existed as a sort of de facto benchmark within the
plankton imaging field in which computer classification can
be considered to be as good as human classification (e.g., Hu
and Davis 2005, 2006). In reality, Culverhouse et al.’s (2003)
findings were specific to a difficult identification task, in which
morphologically variable dinoflagellate species (genus Dino-
physis) were being distinguished from each other. For in situ
plankton images, it is not very difficult for a human to distin-
guish between broad plankton community-based groups
(e.g., calanoid copepods, shrimps, and larval fish), but rather,
the difficulty only lies when distinguishing within certain taxa
(e.g., between larval mesopelagic fishes, or between small
decapod shrimps). Of course, classification difficulty may vary
due to environmental conditions and ecosystem composition.
Nonetheless, we suggest that this benchmark should be revis-
ited, and raised to at least 90%. In manual sorting for the pre-
sent dataset as well as others with 120+ classes (e.g., Cowen
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et al. 2015), the proportion of unknowns, in which an expert
operator is unable to sort the image, ranged from < 1% for
30–35 classes to ca. 5% for 120–130 classes. In the present
case, application of a method incorporating deep machine
learning and filter thresholding resulted in over 90% precision
on all the nonrare biological groups; this approaches the point
in which we may consider an automated classifier to be as
good as a human operator in sorting common plankton
groups at higher taxonomic levels.

Application of the Faillettaz et al. (2016) filtering method
gives us the ability to select for the highest probability images,
and subsequently manipulate the precision levels (and by asso-
ciation, the recall rates) in the final classifier. Without filtering,
the raw SparseConvNet classification precision and recall for
the dataset would have been 53% and 63%, respectively. The
filtering step modified the classification statistics (resulting in
84% precision and 40% recall for all groups), but allowed us to
ensure the best description of biological patterns, which was
important given the scientific goals of the image analysis proce-
dure. Applying a classification filter would probably increase
the overall performance of other previously published classifica-
tion schema, and would likely temper the difference between
our results and those earlier studies. Secondarily, we also note
that it is not sufficient to judge a classifier by the class precision
alone; the recall rate must also be incorporated. We therefore
propose a more widespread adoption of the F1-score, which is
the harmonic mean of the precision and recall.

CNNs represent a significant advance over traditional
machine learning methods, because they are designed to learn
and automatically extract feature descriptors (LeCun
et al. 2015). Aside from the construction of the neural network
architecture, the single most important factor determining the
success of the classifier was the training set. Fernandes
et al. (2009) had proposed a computer-assisted method for
determining the optimal number of classes (settled on 30),
using a Tree-Augmented Naïve Bayes classifier. In our case,
since deep-learning methods are capable of classifying many
more classes, we manually defined 108 classes and then
grouped them into 37 groups after classification, but future
efforts with CNNs should utilize some amount of computer
assistance in determining the identity and quantity of classes.

Deep-learning methods require large amounts of training
data, and our 42,000 item training set for 108 categories was
likely on the low end; significant amounts of data augmenta-
tion was necessary. However, this is still an order of magnitude
greater than the training sets used by traditional machine learn-
ing plankton image classifiers: Hu and Davis (2006) used
200 images per class for seven classes, Bi et al. (2015) used
210 images total for three classes, and Faillettaz et al. (2016)
used 5979 images for 14 classes. Our choice of using a “natural”
training set, where rare classes were augmented but not to the
quantity of the most common classes, was a decision following
our broader research objectives of describing mesozooplankton
(including larval fish) distributions. These organisms are

relatively rare, especially compared to protists and diatom
chains, and thus needed special attention within the training
set. Augmenting rare groups in the training set is naturally a
time-consuming process. However, if the scientific objective of
the image analysis system was to classify the detritus and com-
mon phytoplankton, then a more representative training set
would achieve higher accuracies (Chang et al. 2012). Further-
more, to the extent possible, it was necessary to include the
range of images, from the best (clearest, sharpest) image to the
worst (most ambiguous, blurry) image, and to divide classes not
only by taxonomy, but also morphological differences. Still,
there were classes that did not perform very well (e.g., “shrimp
other”), but were too difficult to separate further.

The development of our classifier (an application of the spa-
tially sparse CNN, Graham 2014, 2015) was achieved following
the 2015 National Data Science Bowl, a Kaggle.com machine
learning competition. For the competition, we used the same
ISIIS imaging system as in the present paper, but data from a
different sampling region (Straits of Florida; competition data
available at Cowen et al. 2015). While crowd-sourcing and
machine learning competitions are not within the scope of the
present paper (but discussed in Robinson et al. 2017), there
were some key lessons we learned through the process that
determined the successful application of the present classifier.
First, in many competition settings, teams submit results that
are an average of multiple models, also known as ensembles,
which are computationally expensive and not necessarily the
most realistic for real-world use. Therefore, it was critical to
identify the single best model, which may or may not be part
of the best ensemble (it was not in our case). Second, further
development of the classification scheme was necessary after
the competition ended. Essential to our success was the inclu-
sion of a bio-computing specialist who could bridge the gap
between the biologists and the computer scientists. Finally, the
design of the competition dataset was also highly important, as
it determined the types of solutions that emerged. We found
that it was essential that the dataset had all the qualities of a
good training set (ratio of images within rare vs. common clas-
ses, inclusion of high- and low-quality images, and separation
of classes by taxonomy and morphology). These three key
points facilitated the successful transfer of an image classifier
between the competition and the present context.

As plankton datasets, both physical (e.g., the Continuous
Plankton Recorder archive) and digital (the growing ISIIS col-
lection), get larger and more comprehensive, it is critical to
note that the amount of samples to sort at a particular taxo-
nomic resolution will always depend on the scientific question
and the time available for analyses. For some questions, such
as the spatio-temporal variability in ichthyoplankton distribu-
tions (Richardson et al. 2010) or the niche shift of sibling spe-
cies (Beaugrand et al. 2002), manually sorting physical
samples to the genus or species level is necessary, but in those
cases, only a relatively small number of organisms can realisti-
cally be sorted. For other questions, such as the fine-scale
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distribution of broad taxonomic groups, the complete analyses
of samples collected by high throughput imaging systems is
most adapted. In that case, manual sorting would be time pro-
hibitive, especially with increasing numbers of classes
(we estimate that sorting into 40–50 classes, which can be
done at 5000 images d−1, occurs at roughly half the rate of
sorting into 10–15 classes). Therefore, computer-assisted or
fully automated classification becomes more expedient. Even
the necessity of creating a training set, with associated inde-
pendent test set, for each sampling region is time consuming
(by our estimates, ca. 2–3 months). The future development of
a master, global-level training set with regional filters could
facilitate a more rapid image classification process. This could
eventually lead to a minimal amount of manual identification
work for each additional dataset (i.e., for spot-checks for the
final confusion matrix, which would yield a class-specific cor-
rection factor for densities). The combination of the speed of
classification, use of 100+ classes, high precision, and only
needing to do small amounts of manual sorting would signifi-
cantly increase the utility of plankton imaging systems, as we
will be able to classify millions to billions of in situ plankton
images quickly and accurately.

It is evident that with the recent interest in plankton
(e.g., from the Tara Oceans project, Bork et al. 2015) that there
are many additional questions and areas for exploration
regarding the base of the marine food chain. Imaging systems
are inherently complementary to net-based sampling; physical
samples are always going to be necessary for ecological ques-
tions requiring fine taxonomic resolution and the analysis of
hard structures (e.g., otoliths), isotopes, or genetics. However,
large-volume imaging systems can be particularly useful for
addressing questions regarding rare, gelatinous, or large organ-
isms in the context of predator-prey dynamics, horizontal and
vertical aggregations, and fine-scale relationships to the envi-
ronment. Plankton imaging systems can also provide impor-
tant validation data for regional and global ocean ecosystem
models, which suffer from insufficient data for constraining
patterns and processes. The development of whole, integrated
pipelines for plankton image analysis can enhance the utility
of automated classification tools, and can eventually lead to
the goal of real-time image processing done at sea. Combined
with some net-sampling for taxonomic validation, plankton
imaging systems can be an incredibly powerful tool, with
applications in ocean monitoring and fisheries management,
as well as in addressing many of the fundamental questions
still existing within plankton ecology.

Data availability statement
All manually classified images from the full training set and

test sets (43K probability filtering set and 75K random spot-
check set), as well as text files containing predicted and vali-
dated classes for all test sets will be available on Zenodo.org
(doi: 10.5281/zenodo.836492). Executable files for the

segmentation code will also be on Zenodo.org. Source code for
SparseConvNet is available at https://github.com/btgraham/
SparseConvNet, as well as on Zenodo.org.
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