SFEcologie 2022, 2022-11-22 Irisson, Salinas, Colin, COMPLEx team, Picheral

EcoTaxa

a tool to support the taxonomic classification of large image datasets through supervised machine learning

Why EcoTaxa?

ZooScan

1.5M objects/y

FlowCam

~5M objects/y

UVP

~10M objects/y

ISIIS

100M objects/y

Step 1: Import images (and metadata) into a project

Demo Zooscan JO low taxo res (241, 1156, 0, 0 / 1397) **Open in a separate window** (right click to copy link) Project: **Demo Zooscan JO low taxo res** (managed by : Jean-Olivier Irisson) To report a mistake, contact Jean-Olivier Irisson Classification : fiber<detritus fiber < detritus < not-living (id=85076) validated by Jean-Olivier Irisson (irisson@obs-vlfr.fr) on 2022-11-21 20:37:38 Complementary information (edit): Image list : 1 🔪 1 mm Save as dubious Enable Editing Save as Validated Close Set a new classification : \mathbf{T} Object details Classification change log Мар Sample details Acquisition details **Processing details**

longitude	7.31567	latitude	43.68500	Date	2018-02-05	Time (daytime)	12:00:00 (Day)
Depth min	0.0	Depth max	75.0	Classif auto	Copepoda (0.762)	Classif auto when	2021-07-29 14:09:52.442648
Object #	83060411	Original Object ID	wp220180205_d2_1_	537			
lat_end		lon_end		area	1918	mean	166
stddev	50.73	mode	243	min	78.00	max	248
x	63.21	у	61.49	xm	63.33	ym	61.95
perim.	384	bx	4189	by	11923	width	133
height	99.00	major	112	minor	21.80	angle	140
circ	0.16	foret	156	intden	318630	median	163

Step 1: Import images (and metadata) into a project

Edit complementary informations

A note on the data architecture

SAMPLE lat/lon date/time volume operator instrument resolution

. . .

SUBSAMP fraction px size

frac.method

frac. mesh

. . .

mandatory fixed format internal free

IMAGE path rank w/h

• • •

feature n

A note on the data architecture

SUBSAMP fraction px size frac.method frac.mesh ...

mandatory fixed format internal free Allows to compute concentrations and biovolumes

IMAGE
path
rank
w / h

Step 2: Classify a few images

Step 2: Classify a few images

How? **Step 3:** Train a classifier based on classified images and predict the others ⁻ECO**Taxa**^{2.6} Demo Zooscan JO low taxo res PREDICTION: Choice of Learning Set data source A Learning Set AKA Training Data Set i Next: Choose objects in selected projects Inside these projects, you will be able, - Which categories you're interested - How many objects you want to use - For these objects, which features a This Learning set will then be used for Project deep features model: LOKI_2022-05-17. # Matching features ≥ 10 Instrument : Zooscan × ▼ Filter on title : Filter Model is usable. 🕄 # - Title Inst. #859 - Demo Zooscan JO low taxo res Zooscan #2374 - North Inlet Zooplankton Zooscan #1040 - _Zooscan_Reference Zooscan #6212 - ZOOSCAN PELGAS_2004_2016_NGrandremy_PhD_thesis Zooscan #6729 - ZOOSCAN PELGAS Pour Laetitia Zooscan #2291 - TRAFFIC_M153_Multinet_Maxi Zooscan #5421 - Gradients_v2 Zooscan #714 - Zooscan Tara Oceans MTN 300 ALL NETS - NEW!

Zooscan

Zooscan

Zooscan

Zooscan

Zooscan

Zooscan

Zooscan

Zooscan

Zooscan

#6285 - Zooplankton Helgoland - Normalnetz 150 2006

#418 - Zooscan Tara Oceans 2009 2013 MTN 300 sn033

#611 - Projet DVM Lacs Boreaux - Sabrina Gignac Brassard 2016-2017

#1125 - ICaWR

#4565 - zooscan_cecilia_2020

#5977 - Zooscan_SO21_MN_0-1000m

#3657 - Zooscan Triatlas 2019 MTN 200

#6111 - Triatlas 2019 MTN 200 NEW

	4
s built using validated data from one or several projects.	
, in next pages, to specify:	
in predicting.	
e as reference for the prediction.	
re relevant to the prediction.	
running the prediction task. 😧	

# Validated	# Matching features	Deep features model
0	69	LOKI_2022- 05-17
1893472	69	
1444921	69	zooscan
1153507	69	zooscan
477713	69	zooscan
465089	69	zooscan
428099	69	zooscan
393382	69	zooscan
382243	69	zooscan
350447	69	
323013	69	
313351	69	zooscan
304151	69	
285458	69	zooscan
285458	69	zooscan
284105	69	zooscan

How? Ste

^{-E}ECO**Taxa**^{2.6} Demo Zooscan JO low taxo res

PREDICTION: Choice of Learning Set categories and size

Next: Choose features in selected objects

From data source, which is : #859 - De built.

Optionally, each category can appea

• The experience shows that it is often

Learn from max.

(id)		Source (validated) category	# source	% source
(84963)		detritus	6	42.9
(25828)	\checkmark	Copepoda	3	21.4
(85076)		fiber < detritus	3	21.4
(85123)	\checkmark	Appendicularia	2	14.3

Step 3: Train a classifier based on classified images and predict the others

			Jean-Olivie
-		• • • • • • • • • • • • • • • • • • • •	
emo Zoosc	an JO low taxo res, only ob	jects validated in below chosen categories will b	e present in the Learning Set being
ar as anoth	er category, generally a par	ent one, to the machine learning algorithm. 😧	
en more ef	ficient to predict into a lim	ted number of categories and then validate in d	etail using more categories.
5000 ob	jects per category. 😮	Make categories appear like in:	
Total i	s currently 14 objects.	Project search	▼
	# learning set	Арре	ar as category
00	6	select category 🔻	
00	3	select category 🔻	
8	3	select category 🔻	
90	2	select category 🔻	

Step 3: Train a classifier based on classified images and predict the others

⁻Eco**Taxa**^{2.6} Demo Zooscan JO low taxo res

PREDICTION: Choice of features and settings

Start prediction task

Add deep features 🛛 🖉

You have chosen 14 reference objects a prediction task using the Learning

- Prediction will be better if you exc
- Features with a single, constant va a reminder.
- Missing values will be replaced by
- Prediction settings are recorded in EcoTaxa for the next prediction.

%area 🔽	angle 🔽	area 🗸	area_exc 🔽	bx 🔽	by 🔽	cdexc 🔽	centroids 🔽	circ. 🗸	circex 🗹	compentropy	compm1
compm2	compm3	compmean	compslope	convarea 🗸	convperim 🔽	CV 🗸	depth_max 🗌	depth_min	elongation 🔽	esd 🔽	fcons 🔽
feret 🔽	feretareaexc 🔽	fractal 🔽	height 🔽	histcum1 🔽	histcum2 🔽	histcum3 🔽	intden 🔽	kurt 🔽	lat_end	lon_end	major 🔽
max 🔽	mean 🔽	meanpos 🔽	median 🔽	min 🔽	minor 🔽	mode 🔽	nb1 🔽	nb2 🔽	nb3	perim. 🔽	perimareaexc 🗸
perimferet 🔽	perimmajor 🔽	range 🔽	skelarea 🔽	skew 🔽	slope 🔽	sr 🗸	stddev 🔽	symetrieh 🔽	symetriehc 🔽	symetriev 🔽	symetrievc 🔽
tag	thickr 🔽	width 🔽	х 🗸	xm 🔽	xmg5	xstart 🔽	y 🔽	ym 🔽	ymg5	ystart 🔽	

Jean-0	Olivie	
Jean		ļ

ts to build the Learning Set. In this last step, you can choose which features to associate with each of these objects, and start Set.	
clude features which are not related to the classification, e.g. coordinates in the raw image. alue, or too many missing values, are useless for prediction and are automatically excluded. Some of them are listed here as	
the median value for this feature from the reference objects.	

A note on the machine learning architecture

[–]Eco**Taxå**

25% Retrieving objects to classify

• WARNING : this is an asynchronous process. You can either:

- Open another tab or window to continue working in EcoTaxa (and monitor the progress of the task switching to this page from time to time)
- Leave this page to continue working in EcoTaxa (and click on the "Run" or "Done" buttons on the upper right of the Ecotaxa topper to monitor the progress of the task or check its completion)

Asynchronous tasks are utilized for processes that can be long. They can create temporary data (like export file) that can be manually removed at the end of the process even if EcoTaxa will do it for you on a regular schedule. Remaining tasks can be checked using the "Done" or "Error" top right buttons.

Step 3: Train a classifier based on classified images and predict the others

Step 4: Sort predicted images by classification score

Step 4: Sort predicted images by classification score

Step 5: Confirm or correct automatic classifications

Step 5: Confirm or correct automatic classifications

Step 5: Confirm or correct automatic classifications

Rinse and repeat!

Rinse and repeat!

Eco**Taxa** today

242M objects

101M classified

+5M per month

1,800 users from **550** institutions worldwide

At any point of the day, 90 sessions from **50 users**

Sorting of **5,000 to** 10,000 images per day per operator

2020 (91,000 samples)

2016 (56,000 samples)

Model

Classic features + Random Forest

Size	Accuracy	Avg. precision	Avg. recall
1M	71.1	65.0	64.2

Model

Classic features + Random Forest

MobileNet v4 + 600

Size	Accuracy	Avg. precision	Avg. recall
1M	71.1	65.0	64.2
5.4M	89.4	91.2	92.0

Model	Size	Accuracy	Avg. precision	Avg. recall
Classic features + Random Forest	1M	71.1	65.0	64.2
MobileNet v4 + 600	5.4M	89.4	91.2	92.0
MobileNet v4 + 1792	7.5M	89.2	90.9	91.9

Model	Size	Accuracy	Avg. precision	Avg. recall
Classic features + Random Forest	1M	71.1	65.0	64.2
MobileNet v4 + 600	5.4M	89.4	91.2	92.0
MobileNet v4 + 1792	7.5M	89.2	90.9	91.9
EfficientNet v2 S + 600	25M	89.8	91.2	92.9

Model	Size	Accuracy	Avg. precision	Avg. recall
Classic features + Random Forest	1M	71.1	65.0	64.2
MobileNet v4 + 600	5.4M	89.4	91.2	92.0
MobileNet v4 + 1792	7.5M	89.2	90.9	91.9
EfficientNet v2 S + 600	25M	89.8	91.2	92.9
EfficientNet v2 XL + 600	208M	89.1	90.9	92.3

Model	Size	Accuracy	Avg. precision	Avg. recall
Classic features + Random Forest	1M	71.1	65.0	64.2
MobileNet v4 + 600	5.4M	89.4	91.2	92.0
MobileNet v4 + 1792	7.5M	89.2	90.9	91.9
EfficientNet v2 S + 600	25M	89.8	91.2	92.9
EfficientNet v2 XL + 600	208M	89.1	90.9	92.3
MobileNet v4 + 50	4.4M	88.9	90.1	901.6

Model	Size	Accuracy	Avg. precision	Avg. recall
Classic features + Random Forest	1M	71.1	65.0	64.2
MobileNet v4 + 600	5.4M	89.4	91.2	92.0
MobileNet v4 + 1792	7.5M	89.2	90.9	91.9
EfficientNet v2 S + 600	25M	89.8	91.2	92.9
EfficientNet v2 XL + 600	208M	89.1	90.9	92.3
MobileNet v4 + 50	4.4M	88.9	90.1	901.6
MobileNet v4 + 1792 + PCA 50 + RF	~4.4M	89.1	90.1	92.0

10M

Future plans

Search by **similarity**/dissimilarity

Batch classification

Integration with a dedicated **taxonomic guide**

Image Labeling Tool

Future plans

Search by **similarity**/dissimilarity

Batch classification

Integration with a dedicated **taxonomic guide**

Future plans

Search by **similarity**/dissimilarity

Batch classification

Integration with a dedicated **taxonomic guide**

7

247 **2.5** Sharing reference list of categories

The updated list of categories must be portable in order to be able to update an application runningon a field computer without any Internet connexion.

250 2.6 Quality flag

- The **quality** of the identification is noted by a **flag** (*annotation_status*) which is automatically set by the application in most cases.
- The quality flag can be read at the importation stage if exists in the spreadsheet provided with the images.
- 255 The possible values are:

257

258

259

260

261 262

263

264 265

266

- 256 No identification ("noid")
 - Identification from the automated prediction output ("predicted")
 - A manual doubtful identification needs to be confirmed by other annotators ("doubtful")
 - Identification is fully validated ("validated")
 - Flag changes from "predicted" to "validated" when the vignette is manually dragged into a category or renamed or when the "validate all" button is pressed.
 - Flag changes to "doubtful" when selected in the object page.
 - Flag changes from "noid" to "predicted" when an automatic prediction is made
 - Flag changes from "noid" to "validated" when the vignette is manually dragged into a category (ie when it is manually and intentionally renamed).

7

267 2.7 Users roles and rights

268 Four roles of users and associated rights/privileges are considered:

	visitor	annotator	project manager	application manager (unique)
View images	х	x	Х	x
Annotate images (manual)		x	Х	x
Register annotators			Х	x
Annotate images (automatic)			Х	x
Import new objects in project			Х	x
Set project status			Х	x
Create subset from project			Х	x
Manage the taxonomy list			х	x
Create classes			х	x
Create project				x
Register project managers				x
		X		
		(

Lessons learned

Subcontracting has the advantage of forcing to **specify** features

Demo Zooscan JO low taxo res (3, 209, 0, 0 / 212)							
J Filter: Taxo= Copepoda X							
elect all It Score	♣ IF Display	Status All	1000 \$ 9% 10	00 🗘 🔍 🗆 💻 🖸 📿			
•	۲	٢	0	•	۲		
					Ń		
1 mm	1 mm	1 mm	1 mm	1 mm	1 mm .		
Copepoda Score : -	Copepoda Score : -	Copepoda Score : -	Copepoda Score : 0.30	Copepoda Score : 0.29	Copepod Score : 0.29		
•	٢	•	۲	٢	٢		
1 mm .	<u>1 mm</u>	1 mm	1 mm	<u>1 mm</u>	1 mm		
Copepoda Score : 0.29	Copepoda Score : 0.29	Copepoda Score : 0.29	Copepoda Score : 0.29	Copepoda Score : 0.29	Copepoda Score : 0.29		
••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	Solution	©	I mm	© 1 mm		
Copepoda Score : 0.29	Copepoda Score : 0.28	Copepoda Score : 0.28	Copepoda Score : 0.28	Copepoda Score : 0.28	Copepoda Score : 0.28		
	٢	۲		۲	۲		
	- dij				3		
1 mm	1 mm	1 mm	<u>1 mm</u>	<u>1 mm</u>	1 mm		
Copepoda Score : 0.28	Copepoda Score : 0.28	Copepoda Score : 0.28	Copepoda Score : 0.28	Copepoda Score : 0.28	Copepoda Score : 0.28		

Copepoda

Subcontracting has the advantage of forcing to **specify** features

Machine learning as an **assistance** rather than an end in itself; and **KISS**

Subcontracting has the advantage of forcing to **specify** features

Machine learning as an **assistance** rather than an end in itself; and **KISS**

An **Application Programming Interface** is the center of the modern web

Subcontracting has the advantage of forcing to **specify** features

Machine learning as an **assistance** rather than an end in itself; and **KISS**

An **Application Programming Interface** is the center of the modern web

Subcontracting has the advantage of forcing to **specify** features

Machine learning as an **assistance** rather than an end in itself; and **KISS**

An **Application Programming Interface** is the center of the modern web

Flexibility is good, too much flexibility is difficult

Subcontracting has the advantage of forcing to **specify** features

Machine learning as an **assistance** rather than an end in itself; and **KISS**

An **Application Programming Interface** is the center of the modern web

Flexibility is good, too much flexibility is difficult

Proper (web) development is **expensive**

Subcontracting has the advantage of forcing to **specify** features

Machine learning as an **assistance** rather than an end in itself; and **KISS**

An **Application Programming Interface** is the center of the modern web

Flexibility is good, too much flexibility is difficult

Proper (web) development is **expensive**

Institutional **hosting** is a problem

irisson@normalesup.org

