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Why EcoTaxa?

ZooScan


1.5M objects/y


FlowCam


~5M objects/y


UVP


~10M objects/y


ISIIS


100M objects/y
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Step 1: Import images (and metadata) into a projectHow?



A note on the data architecture

IMAGE

path

rank

w / h

OBJECT

objID

taxoID

who

when

area

major ax.

minor ax.

feature 4

...

feature n

USERS

name

email

permissions

SUBSAMP

fraction

px size

frac.method

frac. mesh

...

SAMPLE

lat/lon

date/time

volume

operator

instrument

resolution

...

PROJECT

title

settings

mapping

TAXO

taxoID

name

parentID

mandatory

fixed format

internal

free



A note on the data architecture

IMAGE

path

rank

w / h

OBJECT

objID

taxoID

who

when

area

major ax.

minor ax.

feature 4

...

feature n

USERS

name

email

permissions

SUBSAMP

fraction

px size

frac.method

frac. mesh

...

SAMPLE

lat/lon

date/time

volume

operator

instrument

resolution

...

PROJECT

title

settings

mapping

TAXO

taxoID

name

parentID

mandatory

fixed format

internal

free

Allows to compute 
concentrations 
and biovolumes



Step 2: Classify a few imagesHow?



Step 2: Classify a few imagesHow?



Step 3: Train a classifier based on classified images and predict the othersHow?



Step 3: Train a classifier based on classified images and predict the othersHow?



Step 3: Train a classifier based on classified images and predict the othersHow?



Step 3: Train a classifier based on classified images and predict the othersHow?



CNN

CNN feature 1

...

CNN feature n

OBJECT

objID

taxoID

area

major ax.

minor ax.

feature 4

...

feature n

A note on the machine learning architecture

Random forest

306 9. Additive Models, Trees, and Related Methods
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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Step 3: Train a classifier based on classified images and predict the othersHow?



Step 4: Sort predicted images by classification scoreHow?
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Step 5: Confirm or correct automatic classificationsHow?
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Rinse and repeat!How?
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EcoTaxa

today

242M objects


101M classified


+5M per month


1,800 users from 550 
institutions worldwide


At any point of the day, 
90 sessions from 
50 users


Sorting of 5,000 to 
10,000 images per day 
per operator

Training data set: in
the context of plankton
images, a set of images
classi!ed into
categories by experts,
from which the
algorithm will learn

Test data set: in the
context of plankton
images, an
independent set of
expert-classi!ed
images on which the
predictive
performance of the
classi!er is evaluated

2008 (4,000 samples) 2012 (17,000 samples)
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Figure 3
Accumulation of images and samples contained in a single repository (EcoTaxa; Picheral et al. 2017). Image data sets collected with
different instruments (the UVP, IFCB, FlowCam, ZooScan, ISIIS, etc.) have been uploaded by an international community of users
from more than 350 organizations. Abbreviations: IFCB, Imaging FlowCytobot; ISIIS, In Situ Ichthyoplankton Imaging System; UVP,
Underwater Vision Pro!ler.

of image-derived traits to enable new functional ecology approaches, and (c) propose next steps
for the future of plankton classi!ers, the coordinated acquisition of massive imaging data sets, and
the development of tools for quantitative imaging.

2. THE CLASSIFICATION OF PELAGIC IMAGES
2.1. A History of Machine Learning Approaches
Machine learning covers all techniques that learn patterns from a training data set and can then
!nd the same patterns in another, independent, test data set. To classify images taxonomically
and access the underlying ecological information (e.g., concentrations/biomass per taxon), most
studies have used supervised classi!ers, which learn to classify (i.e., give a name to) new images
based on a set of images already classi!ed by human experts.

We now tend to separate classic machine learning from deep learning (LeCun et al. 2015). In
the classic approaches, the images are !rst processed by deterministic algorithms that extract in-
formation from them—the size of the organism, its average color or gray level, the complexity of
its shape, its symmetry, and so on. Those features are said to be handcrafted because they indeed
need to be crafted by a practitioner, who must assess or guess what is relevant to tell the various
taxa apart. Then, the classi!cation algorithm, such as a support vector machine (Cortes & Vapnik
1995) or a random forest (RF) (Breiman 2001), learns which combinations of feature values are
associated with which taxonomic label.Deep learning for image classi!cation is based on convolu-
tional neural networks (CNNs) (Krizhevsky et al. 2012, Russakovsky et al. 2015). The !rst part of
the network extracts features from the input image by computing convolutions (i.e.,multiplication
by a !lter) over it; convolutions increase contrast, highlight edges, and so on. After several steps of
convolution and reduction, the image is transformed into a vector of numbers: its deep features.
These features are then used by a classi!er, just like with classic learning; the classi!er here is an
arti!cial neural network. The main difference from classic machine learning is that the feature
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Model Size Accuracy Avg. precision Avg. recall

Classic features + Random Forest 1M 71.1 65.0 64.2

MobileNet v4 + 600 5.4M 89.4 91.2 92.0

MobileNet v4 + 1792 7.5M 89.2 90.9 91.9

EfficientNet v2 S + 600 25M 89.8 91.2 92.9

EfficientNet v2 XL + 600 208M 89.1 90.9 92.3

MobileNet v4 + 50 4.4M 88.9 90.1 901.6

MobileNet v4 + 1792 + PCA 50 + RF ~4.4M 89.1 90.1 92.0
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For plankton images


...

not very deep
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Batch classification


Integration with a dedicated taxonomic guide
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EcoTaxa

Lessons learned

Subcontracting has the advantage of forcing to specify 
features

Machine learning as an assistance rather than an end in 
itself; and KISS

An Application Programming Interface is the center of 
the modern web

Flexibility is good, too much flexibility is difficult

Proper (web) development is expensive

Institutional hosting is a problem

API

OBJECT

objID

taxoID

who

when

area

major ax.

minor ax.

feature 4

...

feature n

SUBSAMP

fraction

px size

frac.method

frac. mesh

...

SAMPLE

lat/lon

date/time

volume

operator

instrument

resolution

...

Allows to compute 
concentrations 
and biovolumes



Merci
irisson@normalesup.org


