
Application à la Méditerranée épipélagique

Pour faire une carte de MESI il faut 
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Projection factorielle des contributions



Distribution des espèces

Nous avons Nous voulons

⬇ 
Species Distribution Models 

(ou modèles de niche)
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partly because they are considered less interpretable and

therefore less open to scrutiny. It may also be that ecologists

are less familiar with the modelling paradigm of ML, which

differs from that of statistics. Statistical approaches to model

fitting start by assuming an appropriate data model, and

parameters for this model are then estimated from the data.

By contrast, ML avoids starting with a data model and rather

uses an algorithm to learn the relationship between the

response and its predictors (Breiman 2001). The statistical

approach focuses on questions such as what model will be

postulated (e.g. are the effects additive, or are there interactions?),

how the response is distributed, and whether observations are

independent. By contrast, the ML approach assumes that the

data-generating process (in the case of ecology, nature) is

complex and unknown, and tries to learn the response by

observing inputs and responses and finding dominant patterns.

This places the emphasis on a model’s ability to predict well,

and focuses on what is being predicted and how prediction

success should be measured.

In this paper we discuss a relatively new technique, boosted

regression trees (BRT), which draws on insights and tech-

niques from both statistical and ML traditions. The BRT

approach differs fundamentally from traditional regression

methods that produce a single ‘best’ model, instead using the

technique of boosting to combine large numbers of relatively

simple tree models adaptively, to optimize predictive per-

formance (e.g. Elith 

 

et al

 

. 2006; Leathwick 

 

et al

 

. 2006, 2008).

The boosting approach used in BRT places its origins within

ML (Schapire 2003), but subsequent developments in the

statistical community reinterpret it as an advanced form of

regression (Friedman, Hastie & Tibshirani 2000).

Despite clear evidence of strong predictive performance

and reliable identification of relevant variables and interactions,

BRT has been rarely used in ecology (although see Moisen

 

et al

 

. 2006; De’ath 2007). In this paper we aim to facilitate the

wider use of BRT by ecologists, demonstrating its use in an

analysis of relationships between frequency of capture of

short-finned eels (

 

Anguilla australis

 

 Richardson), and a set of

predictors describing river environments in New Zealand. We

first explain what BRT models are, and then show how to develop,

explore and interpret an optimal model. Supporting software

and a tutorial are provided as Supplementary material.
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BRT is one of  several techniques that aim to improve the

performance of a single model by fitting many models and

combining them for prediction. BRT uses two algorithms:

regression trees are from the classification and regression

tree (decision tree) group of  models, and boosting builds and

combines a collection of models. We deal with each of these

components in turn.

 

DECIS ION

 

 

 

TREES

 

Modern decision trees are described statistically by Breiman

 

et al

 

. (1984) and Hastie, Tibshirani & Friedman (2001), and

for ecological applications by De’ath & Fabricius (2000).

Tree-based models partition the predictor space into rectangles,

using a series of rules to identify regions having the most

homogeneous responses to predictors. They then fit a constant

to each region (Fig. 1), with classification trees fitting the

most probable class as the constant, and regression trees

fitting the mean response for observations in that region,

assuming normally distributed errors. For example, in Fig. 1

the two predictor variables 

 

X

 

1

 

 and 

 

X

 

2

 

 could be temperature

and rainfall, and the response 

 

Y

 

, the mean adult weight of a

species. Regions 

 

Y

 

1

 

, 

 

Y

 

2, etc.

 

 are terminal nodes or leaves, and 

 

t

 

1

 

,

 

t

 

2, etc.

 

 are split points. Predictors and split points are chosen to

minimize prediction errors. Growing a tree involves recursive

binary splits: a binary split is repeatedly applied to its own

output until some stopping criterion is reached. An effective

strategy for fitting a single decision tree is to grow a large tree,

then prune it by collapsing the weakest links identified

through cross-validation (CV) (Hastie 

 

et al

 

. 2001).

Decision trees are popular because they represent information

in a way that is intuitive and easy to visualize, and have several

other advantageous properties. Preparation of  candidate

predictors is simplified because predictor variables can be of

any type (numeric, binary, categorical, etc.), model outcomes

are unaffected by monotone transformations and differing

scales of  measurement among predictors, and irrelevant

predictors are seldom selected. Trees are insensitive to outliers,

and can accommodate missing data in predictor variables by

Fig. 1. A single decision tree (upper panel), with a response Y, two

predictor variables, X1 and X2 and split points t1, t2, etc. The bottom

panel shows its prediction surface (after Hastie et al. 2001)
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Distribution modélisée pour quelques espèces
Prochlorococcus Pseudocalanus elongatus

Oithona tenuis Pelagia noctiluca

Epinephelus marginatus Caretta caretta
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Résumé à 15 groupes fonctionnels
Turtles Sharks, Rays Cephalopods Baleen whales

Toothed whales Omnivorous fishes Planktivorous fishes Predator jellies

Predator crustaceans Predator molluscs Filter−feeding jellies Filter−feeding crust.

Filter−feeding mol. Microphytoplankton Pico and nanophyto.

0.00 0.25 0.50 0.75 1.00
median

Groupe Nb espèces
Turtles 1

Sharks, Rays 17

Cephalopods 2

Baleen whales 7

Toothed whales 27

Omnivorous fishes 98

Planktivorous fishes 40

Predator jellies 13

Predator crustaceans 93

Predator molluscs 2

Filter-feeding jellies 99

Filter-feeding crust. 96

Filter-feeding mol. 11

Microphytoplankton 66

Pico and nanophyto. 9

TOTAL 581

médiane
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Carte de MESI



Hypothèses

Les contributions estimées par avis 
d’experts sont réalistes et non-biaisées 

L’avis médian est représentatif 

Les espèces sont correctement 
modélisées 

La probabilité de présence est un bon 
estimateur de l’abondance 

La médiane des probabilités est 
représentative du groupe
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Groupe Nb espèces Sélection
Turtles 1

Sharks, Rays 17 11

Cephalopods 2 2

Baleen whales 7

Toothed whales 27 4

Omnivorous fishes 98 57

Planktivorous fishes 40 22

Predator jellies 13 4

Predator crustaceans 93 83

Predator molluscs 2 2

Filter-feeding jellies 99 44

Filter-feeding crust. 96 90

Filter-feeding mol. 11 9

Microphytoplankton 66 30

Pico and nanophyto. 9 5

TOTAL 581 363

Sélection des espèces modélisées
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Predator molluscs 2 2
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Filter-feeding crust. 96 90
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Conclusion

MESI = aide à la décision ex-ante  

Possibilité de suivre l’évolution de l’indice dans le temps  

Peut permettre l’évaluation ex-post d’une politique de protection  

Méthodologie transposable dans d’autres contextes 

Points faibles : à discuter ensemble... 

Merci pour votre attention ! 


