Influence of oriented swimming

Perspectives

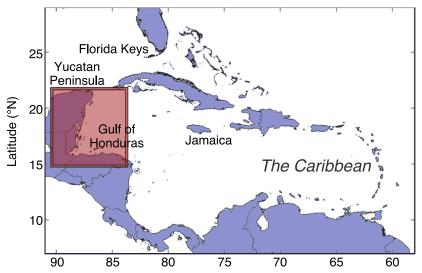
The importance of behavior for self-recruitment: a modeling approach

Jean-Olivier Irisson¹ Claire Paris² Laurent Chérubin² Michel de Lara³ Serge Planes¹

¹Biologie et Écologie Tropicale et Méditerranéenne UMR 5244 EPHE–CNRS–UPVD, Perpignan

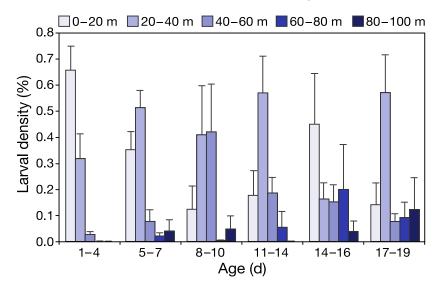
²Rosentiel School of Marine and Atmospheric Sciences University of Miami

³CERMICS École Nationale des Ponts et Chaussées, Paris


ICRS, 2008

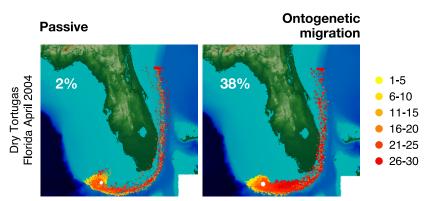
Influence of oriented swimming

Perspectives


Study area

Paris et al, 2007 MEPS

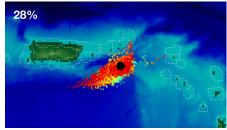
Perspectives


Parameterized vertical migration

Influence of oriented swimming

Perspectives

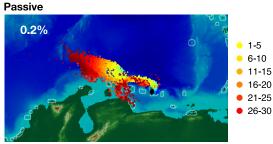
Consequences on trajectories

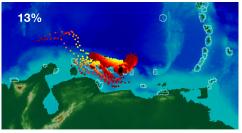


Influence of oriented swimming

Perspectives

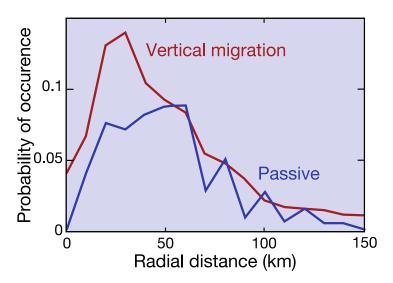
Consequences on trajectories


Ontogenetic migration

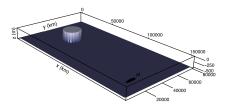

Influence of oriented swimming 000000 Perspectives

Consequences on trajectories

Los Roques Venezuela May 2004


Ontogenetic migration

Influence of oriented swimming


Perspectives

Dispersal kernel

Influence of oriented swimming •00000 Perspectives

2×2 case studies

Pomacentrus amboinensis 25 d, $3.5 \rightarrow 35$ cm s⁻¹, 46.33 h

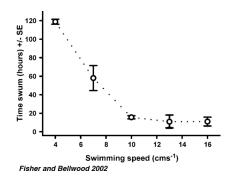


 $\begin{array}{l} \mbox{Temperate larva} \\ \mbox{4+23 d, 0.5} \rightarrow \mbox{5 cm s}^{\mbox{-1}}, \mbox{15 h} \end{array}$

Influence of oriented swimming 000000

Perspectives

Active larvae

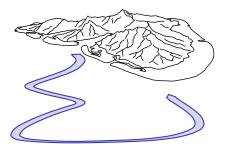

• Choice between possible decisions

- Gain/Cost **balance** for each decision
- Criterion = self-recruit with minimum energy expenditure

Influence of oriented swimming 00000

Perspectives

Active larvae

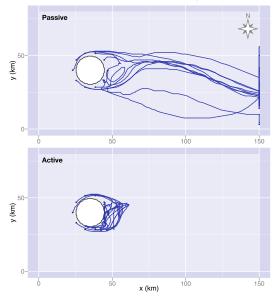


- Choice between possible decisions
- Gain/Cost **balance** for each decision
- Criterion = self-recruit with minimum energy expenditure

Influence of oriented swimming 00000

Perspectives

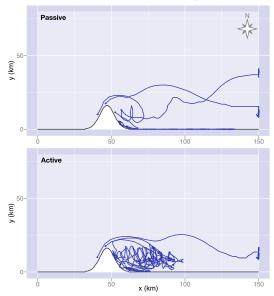
Active larvae



- Choice between possible decisions
- Gain/Cost **balance** for each decision
- Criterion = self-recruit with minimum energy expenditure

Influence of oriented swimming

Perspectives


Consequences on trajectories

Influence of oriented swimming

Perspectives

Consequences on trajectories

Influence of oriented swimming

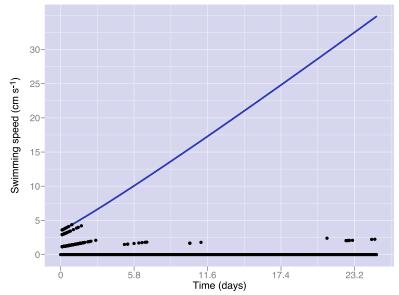
Perspectives

Self-recruitment rate

		Passive	Active
P. amboinensis	Promontory	2 %	95 %
	Island	0 %	95 %
Temperate	Promontory	1 %	72 %
	Island	0 %	45 %

Influence of oriented swimming

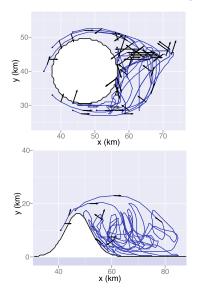
Perspectives

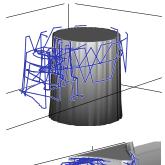

Self-recruitment rate

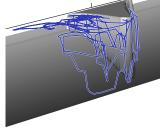
		Passive	Active
P. amboinensis	Promontory	2 %	95 %
	Island	0 %	95 %
Temperate	Promontory	1 %	72 %
	Island	0 %	45 %

Influence of oriented swimming

Perspectives

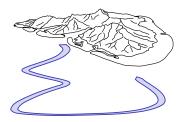

Swimming decisions




Influence of oriented swimming

Perspectives

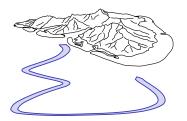
Swimming decisions



Influence of oriented swimming

Perspectives

Why self-recruit?

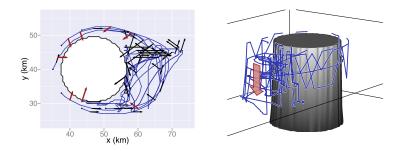


- Observed percentage > 50%
- Parental habitat of sufficient quality for reproduction

Influence of oriented swimming

Perspectives

Why self-recruit?



- Observed percentage > 50%
- Parental habitat of sufficient quality for reproduction

Influence of oriented swimming

Perspectives • 0

Unify approaches

Derive behavioral **strategies** from the local model and include them in **large scale** Lagrangian models.

