
Jean-Olivier Irisson¹ Laurent Chérubin² Serge Planes¹

¹Biologie et Écologie Tropicale et Méditerranéenne UMR 5244 EPHE-CNRS-UPVD, Perpignan

²Rosentiel School of Marine and Atmospheric Sciences University of Miami

Ocean Sciences Meeting, 2008

Where to go?

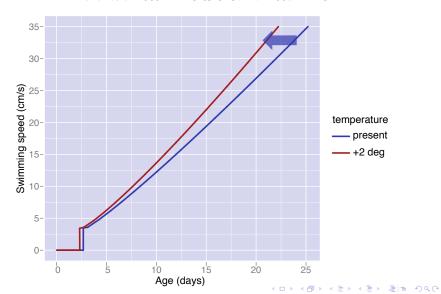
- Choice between possible decisions
- Gain/Cost balance for each decision
- Choose "optimal" decision
- optimal = maximizes recruitment probability

Why "optimize"?

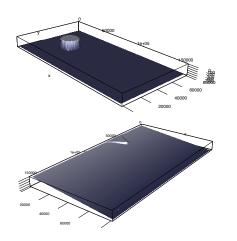
Probabilistic With **random** swimming, few trajectories lead to recruitment.

Select those, without having to compute all possibilities

Why "optimize"?



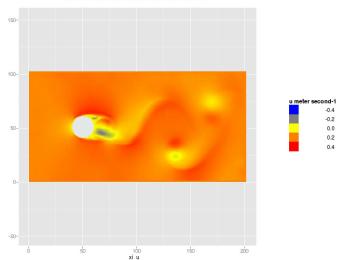
Probabilistic With random swimming, few trajectories lead to recruitment. Select those, without having to compute all possibilities


Evolutionary High mortality during larval phase, hence high selective pressure for orientation behavior favoring recruitment

Influence of temperature

Fisher et al 2005 MEPS & O'Connor 2007 PNAS

Various model systems

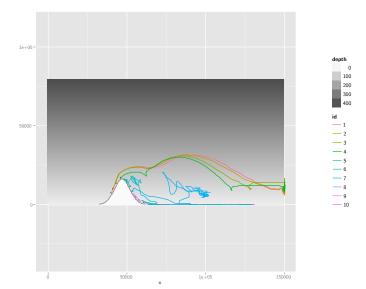

- Coral-reef larva
 Pomacentrus amboinensis
 PLD = 25 days
 speed = 3.5 → 35 cm.s⁻¹
 endurance = 46.33 hours
- Cold temperate larva PLD = 4 + 23 days $speed = 0.5 \rightarrow 5 \text{ cm.s}^{-1}$ endurance = 15 hours

Focus on self-recruitment in each case

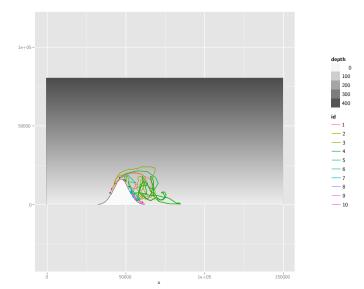
ROMS flow

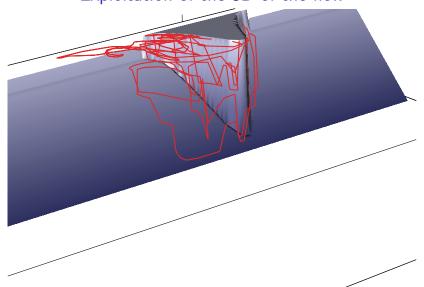
Dong et al 2007 Journal of Physical Oceanography

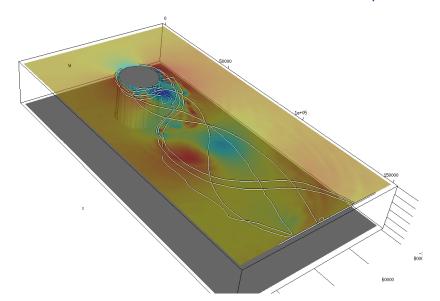
u-momentum component s_rho: 20: time: 203

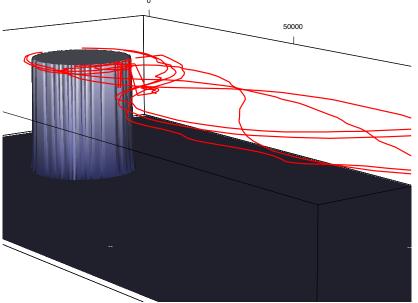


ROMS flow

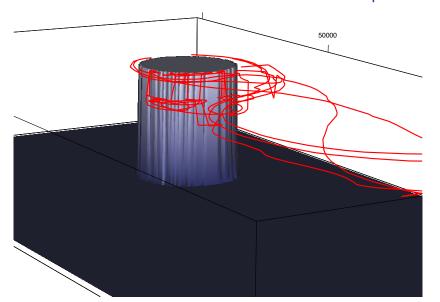

Dong et al 2007 Journal of Physical Oceanography


Passive vs. active larvae


Passive vs. active larvae


Exploitation of the 3D of the flow

Mechanisms of recruitment with faster development



Mechanisms of recruitment with faster development

Mechanisms of recruitment with faster development

Modelling behavior

Overall influence of temperature

		Coral-Reef		TEMPERATE	
		present	+2°C	present	+2°C
	PLD (d)	25	22.1	27	21.7
Prom.	success (%) recruit. rate $\times 10^{-3}$ mean dist (km)	95 1.9 16.5	95 2.2 22.4	72 0.15 43.5	75 0.44 33.1
Island	success (%) recruit. rate $\times 10^{-3}$ mean dist (km)	95 1.9 17.1	95 2.2 18.5	45 0.092 18.1	48 0.28 20.1

Main findings

- Swimming has a large influence
- Exploitation of vertical heterogeneities is the most energetic efficient behavior
- Swimming early makes a difference
- Higher temperature ⇒ Faster development ⇒
 - higher self-recruitment
 - longer distances from origin

Future of the method

Limits Has to work on a grid

- Decisions cannot be interpolated
- Limits in space and time resolution

Perspectives Arbitrarily complex environment

- Inclusion of predation and feeding
- Influence of faster energetic resources consumption in warm water?

Thank you for your attention

and many thanks to
Changming C. Dong
Michel de Lara
Claire B. Paris
for help and inspiration

Optimization procedure

Irisson et al 2004 Journal of Theoretical Biology

Decisions are computed **backwards** in time, from a given final gain:

$$\begin{cases} G(X,T) &= \mathbf{1}_{\{X \in \mathsf{recruitment\ zone}\}} \\ G(X,t) &= \max_d [\ G(f(X_t,d,t),t+1) - C(d)\] \\ d^*(X,t) &\in \arg\max_d [\ G(f(X_t,d,t),t+1) - C(d)\] \end{cases}$$

where the advection model is

$$f(X_t,d,t)=X_{t+1}$$

and the cost function associated with swimming is

$$C(d) \sim d.speed^3$$