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Abstract

Like many marine organisms, most coral reef fishes have a dispersive larval phase. The fate of this phase is of great concern for
their ecology as it may determine population demography and connectivity. As direct study of the larval phase is difficult, we tackle
the question of dispersion from an opposite point of view and study self-recruitment. In this paper, we propose a mathematical
model of the pelagic phase, parameterized by a limited number of factors (currents, predator and prey distributions, energy budgets)
and which focuses on the behavioral response of the larvae to these factors. We evaluate optimal behavioral strategies of the larvae
(i.e. strategies that maximize the probability of return to the natal reef) and examine the trajectories of dispersal that they induce.

Mathematically, larval behavior is described by a controlled Markov process. A strategy induces a sequence, indexed by time
steps, of “decisions” (e.g. looking for food, swimming in a given direction). Biological, physical and topographic constraints are
captured through the transition probabilities and the sets of possible decisions. Optimal strategies are found by means of the so-
called stochastic dynamic programming equation. A computer program is developed and optimal decisions and trajectories are
numerically derived.

We conclude that this technique can be considered as a good tool to represent plausible larval behaviors and that it has great

potential in terms of theoretical investigations and also for field applications.

© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Like most marine organisms, the life cycle of coral
reef fishes is divided into two phases, exemplified by a
quite sedentary, littoral-associated phase recruited from
a dispersive, mobile, pelagic phase (Leis, 1991; Leis and
Carson-Ewart, 2000). Two direct consequences of such a
complex life cycle can be underlined. First of all,
individuals have to negotiate the hazards of two totally
different environments within their lifetime, which
increases the number of factors which potentially limit
the population size. Second of all, marine populations
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are mostly organized in metapopulations with sedentary
adult populations connected by larval flux.

The success of the planktonic stage is highly variable
(Sissenwine, 1984; Steele, 1984), therefore dispersal
often disconnects adult population size and the size of
the cohort of larvae it produces. This has been the basis
for an active debate about whether the size of an adult
population is limited primarily by recruitment or
resources (see reviews by Ehrlich, 1975; Sale, 1980;
Doherty and Williams, 1988; Caley et al., 1996).
Nevertheless, within the field of fish ecology, the term
“recruitment” is hard to define. Indeed, it is a human
defined period of the life cycle and does not refer to a
precise biological phenomenon (Fraschetti et al., 2003).
Recruitment is more or less related to the entry of newly
produced individuals into the adult population and
therefore is a critical parameter for population demo-
graphy. This explains the intense focus around this
concept and also the difficulties that arise when looking
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for a consensus between studies that define recruitment
in different ways. Nevertheless, recruitment is preceded
by “settlement” which, in contrast, is a precisely defined
biological period. Settlement is the time at which fish
larvae become associated with the substrate (Fraschetti
et al., 2003). This precise time period marks the end of
the pelagic larval phase. Some studies pointed out some
important events occurring between settlement and
recruitment (Jones, 1991). Be that as it may, from the
point of view of a pelagic study, we are primarily
interested in whether larvae reach (i.e. settle on) a reef or
not and are not concerned whether settlement is directly
followed by recruitment. In order to be able to relate
this study to the abundant literature dealing with
recruitment we will use this term (recruitment) to define
the end of the pelagic phase even if “‘settlement” would
be more precise.

The geographic origin of the recruits determines the
scale at which a population can be considered as
demographically closed (i.e. self-replenishing). Connec-
tivity between geographical areas is of great concern for
fisheries management as well as for conservation
programs (Dight et al., 1988; Doherty et al., 1995;
Cappo and Kelley, 2001), and therefore, population
dispersal is a central issue in coral reef ecology.
Dispersal of coral reef fish is known to be bounded, as
species composition is not identical everywhere and
often species-specific or assemblage-wide geographic
boundaries can be observed (Springer, 1982). Never-
theless, reefs not separated by vast expanses of open
water were thought to be connected via larvae at a high
frequency. This paradigm culminated in the paper by
Roberts (1997), which suggested that general current
flow and larval duration alone would dictate the
exchange rate of larvae from a specific “upstream” reef
to a specific “downstream’ reef.

The direct study of dispersed larvae is difficult
because dilution of larvae in oceanic waters prevents
efficient plankton analysis far from the reefs and high
mortality rates make capture—mark-recapture studies
difficult. Considering these limitations, it seems worth-
while to reduce the scale of the study from an entire
closed metapopulation to an open subpopulation of this
metapopulation. Therefore we tackle the question of
dispersal from an opposite perspective by determining
larval retention and rates of self-recruitment (recruit-
ment of a larva back to its natal reef). Technically, rates
of self-recruitment can be inferred by incidences of
inbreeding, considering that the only other source of
individuals represents dispersal from other populations
independent of their origin. Furthermore, a direct study
of local retention rather than dispersion seems much
more feasible as field-work, through tagging. For
example, using artificial tagging Jones et al. (1999) were
able to demonstrate that 15-60% of the damselfish
Pomacentrus amboniensi were recruiting to their natal

reef. However, such an approach is still limited by
technical restrictions in the tagging methodology and
by the small proportion of the total population that can
be tagged. More importantly, this approach does not
provide any information on the factors favoring self-
recruitment since the activity during the larval stage and
the potential decisions of the larvae in open water
remain unknown.

Mathematical modelling may help to understand the
events occurring during the pelagic stage and their
influence on the outcome of this phase. Initial modelling
studies considered larvae as passive particles and
focused on hydrodynamic features to explain their
distribution (Black et al., 1990, 1991). These models
predict that larvae are flushed away from their natal reef
in a direction determined by predominant currents.
Therefore, self-recruitment was predicted to be rare or
even impossible. This idea persisted for years as it is the
basis for Roberts’ (1997) paper. Nevertheless, field
studies pointed out significant rates of self-recruitment
(Jones et al., 1999). Moreover, larvae of many coral reef
fishes were found capable of strong, sustained swimming
thus being able to regulate their distribution and
dispersion (Stobutzki and Bellwood, 1997; Leis et al.,
1996; Leis and McCormick, 2002). At least late-stage
larvae were suggested to have cues to orientate them
toward the island, including sound (Leis et al., 1996;
Leis and Carson-Ewart, 2002; Tolimieri et al., 2000),
chemical signals (Sweatman, 1988; Kingsford et al.,
2002) or temperature gradients (Doherty et al., 1996).
Therefore current thinking is that reef fish larvae may
use their swimming and sensory abilities to reduce
dispersal and, hence, favor self-recruitment (Cowen,
2002).

The model of the pelagic phase presented in this paper
takes the behavior of larvae into consideration (other
examples in Wolanski et al., 1997; Porch, 1998; Arms-
worth, 2000, 2001; Armsworth et al., 2001). Further-
more, we model the theoretical situation of an isolated
island where self-recruitment is the only recruitment
possibility (no dispersal to other reefs). Indeed, as
mentioned above, studying self-recruitment rather than
dispersal ensures more feasible field validation of the
results of the model. The design of the model is focused
on the larvae to emphasize the importance of their
behavior, even if the attention is on their trajectories.
Therefore, we regard recruitment as the probability of
a larva returning to its natal reef. In addition, we
represent a larva’s dynamic behavior by considering
that, at different time steps, this larva faces alternative
behavioral decisions from which to choose. Thus, we
need to determine a choice criterion: our theoretical
larva takes the “best” strategy (i.e. the one maximizing
recruitment probability), knowing its state (a strategy is
a function of state and time). This allows us to compute
“optimal’ trajectories which are state trajectories for
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which the sequence of decisions is generated by an
optimal strategy. Here, we have to cope with a dynamic
optimization problem that will be solved by stochastic
dynamic programming. The present paper describes this
modelling method and assesses whether this approach
and its results are reasonable, for a given description of
the environment. Furthermore, we discuss the conse-
quences of the modelling method chosen and underline
the potential of such models.

2. Models development
2.1. A general modelling framework

In the classical framework of stochastic optimal
control (Bertsekas, 2000; Puterman, 1994), a stochastic
dynamic model describes the evolution of the state, with
decisions (or “‘controls”) influencing the dynamics, and
an optimization quantity (“‘gain’) is given. A strategy
(which generates as sequence of controls) is optimal if it
maximizes the mean value of the gain. Here, we outline
the main features of our dynamic optimization problem.

Time. Time is measured in discrete units until a fixed
finite horizon. The duration of dispersal in the field was
proved to be more or less variable around a fixed mean
for each species (Victor, 1986; Wellington and Victor,
1989), with for example some species capable of
delaying their metamorphosis and hence retarding their
contact with the reef (McCormick, 1999). Nevertheless,
in this study we only consider the mean for mathema-
tical simplicity. The time unit is 6 h in order to account
for daily variations in environmental conditions and
larval behavior.

State. The state of the system is entirely characterized
by the state of the larva, made of its energetic resources
and position. Energetic resources evolution is incorpo-
rated to obtain biologically realistic strategies. For
example, if their energetic resources were not limited,
larvae would be able to swim at their maximum speed
eternally without having to rest or eat. Energetic
resources are represented as a scalar. The position can
be a vector of dimension 1 (distance to the reef) or 3
(three-dimensional space), depending on the model.

Environment. Environmental variables such as preda-
tion pressure, food availability and current velocity are
involved in the dynamical evolution of the state. They
are described by functions of position and period of the
day (day or night). Predation pressure and food
availability are represented as probabilities, to survive
or to cat at each time step.

Controlled dynamics. At each time step, the larva may
choose between two types of behavior: foraging or
directional swimming. We consider that there is a trade-
off between these decisions. In both cases, the larva
swims. Indeed, fish larvae have been observed to eat ““on

the run” (Leis and Carson-Ewart, 1998). Nevertheless
when foraging, their movement is assumed random as
it probably follows the erratic movements of their
planktonic prey. Depending on the model, each
behavior may be divided into sub-decisions such as
swimming to the left, swimming downwards, etc. Each
behavior has consequences on the state of the larva, as
follows.

— Directional swimming changes the position of the
larva, but reduces its energetic resources.

— Foraging may increase energetic resources but the
larva cannot choose its future position.

Present state, environmental factors, time and decision
of the larva affect its future state, possibly in a stochastic
way.

Optimization criteria. As underlined before, we focus
here on recruiting trajectories. Therefore we are mainly
interested in strategies inducing sequences of decisions
which maximize the probability that the larva returns to
the natal reef precisely at the last time step, which is the
only possibility, in this model, for a larva to recruit.
There is potentially an infinite number of self-recruiting
trajectories. By maximizing self-recruitment probability
we select the trajectories that maximize survival. In
other words, as self-recruitment is a pre-requisite,
survival is in fact the quantity optimized along a
recruiting trajectory. From this point of view, our
criterion is probably more intuitive, nevertheless this
choice will be further discussed later. Other criteria can
be specified, for example: probability of return with
maximum energy, with given energy, etc. In addition,
focus is always only on the final state: there are no
constraints on the rest of the trajectories as long as they
achieve the given criterion at the last time step.

2.2. A first simple stochastic model

This model is presented only to aid in understanding.
It provides a highly simplified portrayal of the state and
environment of the larva (i.e. one-dimensional ocean,
binary decisions for larvae) in order to be able to detail
Markov chain modelling and its control.

2.2.1. Model description
Time. Time horizon is 2 months (240 time steps).
State.
Energetic resources: 0€[0, 0,,4x]- (1)
When the energetic resources equal zero, the larva is
dead.
Position (distance from natal reef): xe€[0,x,ux].  (2)

Environment. Predation pressure, food availability
and currents are uniform on the whole space. Survival
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probability equals a constant: p. Probability to eat
equals 1 (the food is sufficient). Current intensity equals
Ax" > 0 (current is taking the larva away from the reef of
Ax? units in one time step).

Controlled dynamics. Here, only two choices are
offered to the larva at each time step: foraging (1 = 0)
or swimming toward the reef (= 1). Let us suppose
that the larva is, at time ¢, in state (6,, x,); its decisions
are illustrated in Fig. 1.

1. Foraging decision. Either the larva dies, or it survives
with probability p and then increases its energy by a
fixed quantity A0° and is taken away by the current
on a distance Ax". Thus
(011, X141)
~J0.x) w.p. 1 —p,

(salwmmﬁmuv](of + Aoo)a Sal[xluinsxnm\*](xf + Axo)) Wp P,

where w.p. stands for “with probability” and the sar
function is defined by

imax if é > émax»
Sat[émimémax](é) = é if fe[fmin, fmax]a

émin if i<émin‘
This function is necessary because of the boundaries
on energy and position (see Egs. (1) and (2)).

2. Swimming decision. Either the larva dies, or it
survives with probability p and then swims toward
the reef on a distance Ax!, consuming A@' units of
energy. Thus
(011, X041)

) ©O,x) w.p. 1 —p,
(50110,1,0,1 (01 — AOY), 50l13,,,,3,,1(X0 = AX) - W.p. p

and the same remarks as above apply.

This can be summarized in four conditional transition
probabilities as follows:

Pl(Oi+1, x41) = (0,x)|0, = 0, x, = x,u;, = 0] = 1 — p,
P{(Or41,x1+1) = (sat(0; + AB%), sat(x, + Ax"))|

0, =0,x, = x,u, =0] =p,
Pl(Oi+1, x41) = (0,x)|0, = 0, x, = x,u, = 1] =1 — p,
P{(Or41,x1+1) = (sat(0, — AB"), sat(x, — Ax"))|

0, =0,x, = x,u, = 1]=p.

These probabilities are used to build the transition
matrices that characterize a Markov chain. The element
(i,j) of a transition matrix .# is the probability of the
transition between the initial state indexed by i and the
final state indexed by j. Therefore, to simulate a step
from the initial state indexed by i, focus is on line i and a
final state is drawn according to the probabilities on this
line. In this model, the Markov chain is controlled. This

XA
Foraging
0x, :
y :
N\ i :
b (8,%) :
_— 9
ABg
X A
Swimming
E (8, xp)
Ox, '
_— e

A8:

Fig. 1. State space representation of the transitions in the simple
model. The arrows represent the transitions from the state (0,, x,) and
the associated probability is specified above. Two sketches are
presented, one for each decision. 6 is the amount of energetic reserves,
x is the distance to the reef.

means that a different transition matrix is associated
with each decision of the larva.

The simplest meaningful transition matrices for this
simple model are presented in Fig. 2. State is defined by
three energy levels and four distances from the reef.
When the larva swims, it gains one distance unit but
expends one energy unit; when it forages, it loses one
distance unit because of the current but gains one energy
unit. Matrices are indexed by the decision (0 for
foraging, 1 for swimming).

Let us detail what these matrices mean in a few
relevant cases. First of all, a dead larva (initial energy
equals 0) remains dead (final energy is 0), at the same



J.-0. Irisson et al. | Journal of Theoretical Biology 227 (2004) 205-218 209
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Fig. 2. Transition matrices for the simplest meaningful parameteriza-
tion of the first simple model. Lines are the initials states, columns are
the final states. Elements of the matrices are transition probabilities
between the initial and final states. States are defined by energy and
position values. The legend for energy (E) and position (P) specified for
O s also true for 4.

position, whatever the decision. Thus the identity matrix
is placed at the upper left corner of each matrix. Then
consider case A in Fig. 2. The larva’s initial state is
(energy =1, position=1) and the larva’s decision is to
forage (u = 0). Either it dies with probability 1 — p or it
survives with probability p. Only these two non-zero
probabilities have to be placed on the line corresponding
to the initial state. When it dies (energy becomes 0), it
remains at the same position (position is 1); thus we put
1 — p. When it survives, it forages (energy becomes 2)
but is taken away from the reef (position becomes 2);
thus we put p.

Let us now consider the same initial state but the
alternative decision (u = 1), that is case B. When the
larva dies, nothing changes. When it swims, it loses
one energy unit (energy becomes 0) and comes closer to
the reef (position becomes 1).

Finally, let us consider a two-step scenario. Larva
starts from case A. It survives with probability p. It is
now at state (energy=2, position=2), i.e. in case C.
Either it dies and its state becomes (energy=0,
position =2) with probability 1 — p; or it survives and
swims toward the reef: its state becomes (energy=1,
position = 1) with probability p.

We may notice that these matrices are very sparse.
Indeed, only two final states are possible (transition
probability # 0) from each initial state. This is still true
for greater state dimensions. Hence, matrices become
relatively sparser as the state dimension increases.

Optimization criterion. The ‘“‘gain”, previously de-
fined, is itself divided into “instantaneous’ gains (gains
at each time step) and “final” gain (gain at last time
step). In this model we have decided to maximize the
energetic resources of the larva when it reaches the reef
at final time and this gives zero instantaneous gains

Vi=0,....,T—1, LO,x,ut)=0 3)
and a final gain
D(0,x,T) =0 x 1 —qy. @)

When x, = x and 6, = 0, the optimization problem
can be written as the value function

T-1

V(99 x) l) = u m%{? . [E (Z L(Gsa xS) us» S) + @(9T7 XT, T)>
e - s=t

=, max_ E(07 x 1x,—0y) ()

meaning that the energy, 07, is maximized at time 7" but
only if the larva reaches the island at time 7" (i.e. only if
X = 0)

2.2.2. Stochastic dynamic programming equation

Now that the evolution of the state is described and
that an optimization criterion is specified, optimal
strategies (uff, ...,u% ), functions of state and time,
have to be found. This is done by means of the
stochastic dynamic programming equation (or Bell-
man’s equation) which is the backward induction
(Bertsekas, 2000; Puterman, 1994)
V(0,x,T) = 0 x 1y,
V(0,x,t)

=max((1 —p)V(0,x,t+ 1)+ pV(0 + Ay, x + Axo,t + 1),

(1= p)V(O,x, 1+ 1)+ pV(0 — AOy, x — Axy, £ + 1))
u*(0, x, 1)
Foraging, u=0
eargmax((1 — p)V(0,x,t+ 1)+ pV(0 + Aly, x + Axg, t + 1),

(1 —p)V(O,x,t+ 1)+ pV(0 — Aby, x — Axy, t + 1)).

Swimming, u=1

These equations give Bellman’s value function V
backwards, from the final gain V(0,x,T) which is
known. They also give subsequent optimal decisions
u™(0, x, t) in feedback form (i.e. as functions of state and
time). Furthermore, when initial state conditions are
0y = 6 and x(y = x, we can remark from Eq. (5) that
V0, x,0) = , max E(07 x 1, —0y), (6)

{LPREE T-1
hence providing a direct access to the optimal self-
recruitment rate once V is known.

Here, these equations can be simplified. Indeed, when
the larva is dead (zero energetic resources), it remains in
the same state (energy = 0, position =x) with probability
one. Hence, for any ¢, V(0,x,t) = V(0,x,t+ 1) = - =
V(0,x,T). From the definition of final gain in Eq. (4),
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we have V' (0, x, T) = 0 for any x. Thus, V(0,x,t) = 0 for
any ¢ and any x, and the expression of the induction
simplifies itself:

V(0,x,T) = 0 x 1—,

V0, x,t) = max(pV(0+ AbBy, x + Axg, t + 1),
pV(O — Al x — Axy, t+ 1)),

u#(0,x,1) e argmax(pV (0 + Aly, x + Axo, t + 1),

Foraging, u=0
pV(O — A0y, x — Axy,t+1)).

Swimming, u=1

This backward equation is solved using Scilab
scientific software. However, the last two optimal
decisions can easily be inferred as they are quite
intuitive. The last optimal decision, at time 7 — 1,
should be to swim if the island is reachable. Otherwise,
there is no difference between swimming and foraging:
the island will never be reached anyway. At time step
T — 2, if the island is very far (beyond two times the
larva’s swimming capacity in one time step) there is no
optimal choice for the same reason: the island cannot be
reached at ¢+ = 7. If the island is at twice the distance
that a larva can swim in one time step, the optimal
choice should be to swim so that the island becomes
reachable at time 7" — 1. If the island is very close, the
decision of the larva should be to eat, increasing its
energetic resources, and then swim at time 7 — 1 to
reach the island; in this way, energetic resources are
maximized. The reader can find mathematical justifica-
tions of these conclusions in the appendix .

2.2.3. Trajectories

Given the previous environment description and
characteristics of the larva, optimal strategies (sequences
of optimal decisions) and optimal trajectories (state
trajectories for which the sequence of decisions is
optimal) are computed. There is no finite number of
optimal trajectories. Indeed, in this version of the model,
stochasticity is introduced by predation. Here, two
characteristic examples of optimal trajectories are
presented.

Simulations of this first simple model are presented
in Fig. 3. As noted for the last two decisions, larvae
behavior seems very intuitive. When it survives
(subplot 1), the larva lets itself be taken away by
currents until it reaches its maximum energetic re-
sources. Then, it alternates swimming and foraging in
order to maximize its energy. In subplot 2, larval
behavior begins the same way but it is eaten, at time step
25 approximately, and dies. We can conclude from this
model that the algorithm used to simulate the behavior
of the larvae and to solve the optimization problem is
correct.

Distance Distance
20 20
10 10

0 0

0 10 20 30 40 0 10 20 30 40
Time Time

Energy Energy
10 10

9 9

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0

0 10 20 30 40 0 10 20 30 40
Time Time

1 2

Fig. 3. Examples of some optimal trajectories for the simple model.
Subplot 1 is a larva surviving and recruiting successfully to the island.
Subplot 2 is a larva dying before reaching the island. The upper plot of
each subplot is a trajectory; lower shows energetic resources. Notice
that, even for the plot of trajectory, abscissa represents time and not a
component of position given that position is one dimensional.

2.3. A more elaborate stochastic model

2.3.1. Model description

Now that we have checked the quality of the
algorithm, the aim of this new version of the model is
to set the basis for a biologically relevant description of
the dispersal phenomenon for coral reef fishes. We focus
here on introducing potential key biological features into
the model, with special care regarding the capacity of the
model to be further developed. Numerical values of the
parameters of the model used in simulations are given in
the sequel. They are chosen as a basis for this work (for
testing the model), and are not necessarily intended to
provide generality or to represent a precise field situation.
Nevertheless, literature data enable us to choose correct
size order parameters. Further studies should follow with
more carefully chosen parameter values.

In this more elaborate model we represent an isolated
island (no other island in a 100 km range) in an
archipelago. The island is modelled in three dimensions
as a cylinder, on a horizontal sea bottom. All quantities
are discrete, including space. The horizontal mesh of the
model is approximately 700 m. As we will explain later,
the value of the mesh of this model is determined by
other parameters and is not a direct choice of the user.
As space is three dimensional, larva’s possibilities
increase. Seven decisions are now available: swimming
northward, southward, eastward, westward, towards the
bottom, towards the surface or foraging (and then
swimming in a random direction).
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Water around isolated tropical islands is often driven
by a quite uniform, stable in time, high scale current
regime, possibly disturbed by winds and tides (Rougerie
and Rancher, 1994). Furthermore, islands induce pertur-
bation in this current field, thus creating eddies (Pingree
and Maddock, 1980) or other complex features (Cowen
and Castro, 1994) in their lee. In our model, currents are
roughly approximated by a uniform and unidirectional
vector field of intensity 10 cm s~! (Rougerie and Ran-
cher, 1994). Armsworth (2000) used such a description,
which may seem oversimplified. However, he underlined
that, depending on what is asked of the model, this can be
sufficient. Furthermore, currents are coded here as a 3D
matrix that can be filled with the results of a hydro-
dynamic model if available. Finally, we decide arbitrarily
that this velocity (10 cm s~!) corresponds to a three space
units movement. As the time unit is 6 h, the space unit is
6 x 3600 x 10/3 = 72000 cm or 720 m.

Tropical islands can be compared to oases in a desert
of oligotrophic oceanic waters. Nearshore waters are
sites of high primary production due to terrigenous
input and/or upwelling of deep, nutrient-rich waters
(Rougerie and Wauthy, 1986). Hence, phyto- and zoo-
planktonic densities are higher near the island than
away from it. This is called the “‘reef effect” (Ricard and
Delesalle, 1982; Renon, 1989). Consequently, fish
densities are often higher in the vicinity of an island
than in distant oceanic water (Wolanski and Hamner,
1988). Moreover, the current regime described above
tends to create a plume of nutrient-rich water in the lee
of the island. This phenomenon is known as the “island
mass effect” (Doty and Oguri, 1956). Therefore,
environmental conditions are described in three con-
centric areas, centered on the island and elongated in a
direction determined by the current field. The values of
food availability and predation rate are assumed to be
different in each area, higher in the area closest to the
island, and then decreasing. To sketch this, values of 1.0,
0.85 and 0.75 are arbitrarily chosen for feeding
probability in close, mid- and farfield areas. Similarly,
values of 0.85, 0.95 and 0.99 are chosen for survival
probability. Finally, zooplankton completes a daily
vertical migration (Valiela, 1995) and is abundant in
the top water layer during the day and in the bottom
layer during the night. Therefore, the availability of prey
also depends on the depth and time of the day and we
decided that a larva in the vicinity of abundant plankton
is one and a half times more likely to eat than a larva in
the vicinity of low plankton densities.

Reef fish larvae can present very different behavioral
characteristics, mainly depending on their dispersal
strategy (Thresher, 1984).

1. Eggs can be directly dispersed in the water, thus
advected as passive particles; then larvae hatch in the
ocean.

2. Eggs can be demersal: laid on the substrate, inside the
reef. Parents care for the eggs until larvae hatch.
Then larvae disperse into the ocean but with greater
swimming and sensory abilities than in case 1.

3. The larval phase is completed entirely inside a lagoon
(rare).

In order to test this elaborate version of the model
and to evaluate the importance of a few parameters, we
represent the dispersal of two theoretical larvae follow-
ing different dispersal strategies, namely an Acanthurid
following dispersal strategy number 1 (i.e. planktonic
eggs) and a Pomacentrid following strategy number 2
(i.e. demersal eggs).

They first differ by the length of their larval stage:
around 50 days for Acanthurids (Lo-Yat, 2002) and
from 14 to 35 days among Pomacentrids (Wellington
and Victor, 1989). We choose pelagic stage durations of
50 and 20 days as examples.

Their dispersal strategy has consequences on the
development of their swimming abilities. Acanthurids
disperse eggs that are completely passive. After approxi-
mately 24 h, the larvae hatch and develop 4 days before
the first food intake. Afterwards, their swimming
abilities improve substantially, as late-stage Acanthurid
larvae have been shown to be very good swimmers
(Stobutzki and Bellwood, 1997). On the contrary,
Pomacentrids that produce demersal eggs disperse
larvae that are active as early as the beginning of
dispersal. Their swimming abilities improve brutally
around the middle of the pelagic phase (Fisher et al.,
2000) but stay below those of Acanthurids (Stobutzki
and Bellwood, 1997). Therefore we divide the larval
phase of our two theoretical larvae into three time
periods (Thresher, 1984) in order to account for their
changes in swimming abilities. Swimming speed values
are evaluated from Leis and Carson-Ewart (1997),
Stobutzki and Bellwood (1997) and Fisher et al
(2000). Most studies measured the critical swimming
speed (maximal speed of a current against which a larva
can maintain its position). These speeds are probably
greater than actual swimming speeds in the field.
Therefore, we choose lower swimming speeds for both
species while retaining the difference factor observed
between them (Table 1).

During the first period, the energy of the larvae comes
from their yolk sac and they do not need to forage.
Therefore we consider that their energetic resources are
constant and maximal. Afterwards, they lose one energy
unit per unit time. As they have a maximum resource of
five units they can only swim four time steps (24 h) until
food is needed. Stobutzki and Bellwood (1997) pointed
out much longer swimming durations before starvation
(up to 194 h for Acanthurids for example). Nevertheless,
it has to be considered that, in the field, larvae are likely
to avoid starvation and keep their energetic resources
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Table 1
Pelagic intervals and swimming speeds for the two families represented
in the model

Acanthuridae Pomacentridae

Pelagic larval duration (days) 50 20
Three periods durations (days) 5, 25,20 3,10, 7
Swimming speeds (cm s~ ') 0, 13, 36 3, 10, 20

For the two types of larvae used in the elaborate version of the model
(Acanthuridae and Pomacentridae) the duration of the pelagic interval
is given. It is divided into three periods, the durations of which are
given on the second line. The last line specifies the swimming speed in
cm s~! during these three periods.

level as high as they can. Furthermore, Stobutzki and
Bellwood (1997), as many other studies of this kind,
focused on the time that a larva can swim against a
given current before starving or being exhausted without
any consideration of maintaining the growth rate or the
integrity of the metabolic pathways. Houde and
Zastrow (1993) underlined the fact that the daily food
intake of fish larvae needed to maintain their growth
rate is high (50% of body weight is a general mean),
especially for fast-growing, warmwater fish larvae.
Therefore, fish larvae should eat often, probably on a
daily basis, during dispersal.

Characteristics of the larvae are described here for
one larva and intraspecific interactions are not taken
into consideration. Nonetheless, even if larvae are
known to disperse in patches (Doherty, 1987; Thorrold
et al., 1994), representing the dispersion of one larva is
technically equivalent to representing the dispersion of a
patch of these larvae.

The optimization framework used here implies that
our theoretical larvae are aware of their state, energy
and position. As underlined by Armsworth (2000) and
Kingsford et al. (2002), sensory capacities of larvae have
been poorly investigated even if thought to be impor-
tant. Nevertheless, as mentioned in the introduction, at
least late-stage larvae are capable of orientation and
exhibit sensory capabilities to some extent. Fisher et al.
(2000) underlined that swimming abilities of fish larvae
developed much earlier than what was expected. It
might be the same for sensory abilities and early-stage
larvae may also be able to locate the island. This model
focuses on the behavioral response of larvae and this is
the reason for the emphasis on their sensory abilities.
Furthermore, it must be kept in mind that the aim of
this model is to identify optimal dispersal trajectories
and not to describe precisely the behavior of each
dispersing larva.

In this model, final gain equals one for every non-
dead larva arriving to the island at the given time
horizon. Otherwise final gain equals zero. Instantaneous
gains still equal zero and therefore the criterion
maximized is the probability of recruitment

(P(x7 = 0)). Thus the optimization problem can be
written as

max [E(lgy,—p) = max P(xy =0). @)

Uy, - - Ur—1 Ups-- - Ur—1

As previously mentioned in Section 2.1, when the focus
is on successful (i.e. recruiting) trajectories, this criterion
means optimizing survival along the trajectories.
Furthermore, as noticed in Eq. (6), for a larva starting
from position (x,y,z) and energy resources 0, this
optimal (i.e. maximal) probability to reach the island
is given by V(0, x, y, z,0), where V' is the value function.
This gives direct access to the maximum self-recruitment
rate.

2.3.2. Stochastic dynamic programming: memory and
speed remarks

Dynamic programming requires lots of physical
memory when the state dimension grows. This phenom-
enon is called the “curse of dimensionality” (Puterman,
1994; Bertsekas, 2000). As descriptions of the environ-
ment and of the state become more detailed, technical
problems appear associated with computational
capacity.

The building of transition matrices is the critical step.
Such matrices are very large because each matrix defines
the probabilities to reach all (0, x, y, z) final states from
an initial state, for a given control. For instance, let us
consider a typical frame of 100 x and y space steps, 3
depth steps and 6 different levels of energetic resources.
There are 100 x 100 x 3 x 6 = 180000 possible states.
So, each transition matrix is 180000 x 180 000. As
Scilab uses long float numbers in this computation, it
means that each transition matrix needs 180000 x
32/8 =130 MB of RAM to be stored, and there are
fourteen of them in the elaborate model, which greatly
exceeds RAM capacities of most computers.

This appears as a major obstacle in the use of
dynamic programming for two reasons: speed and RAM
requirement. First of all, these large matrices are filled
by loops. Scilab has a way of managing loops that
is very time-consuming. The solution to this problem is
to use C code to manage these loops and to link this
code to Scilab. The resulting progress is significantly
high: from one whole day to two seconds for a 20 x
20 x 2 x 6 state space. However, the high RAM
requirement still poses problems. Nevertheless, transi-
tion matrices are very sparse. As underlined before, few
final states can be reached from each initial state: a
maximum of two in the simple model and of fifteen in
the elaborate model. This means that on one line, there
are at most fifteen non-zero probabilities. The solution
in Scilab is therefore to store transition matrices as
“sparse matrices’: only non-zero probabilities are
physically stored in RAM.
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Fig. 4. Comparison of a characteristic example of optimal trajectory for a larva of type Acanthuridae and a larva of type Pomacentridae, in the
elaborate model. The first column gives an example of a trajectory for a larva of type Acanthuridae, the second for a larva of type Pomacentridae. In
each column, the first three plots are a three-dimensional representation of the trajectory for time step one (1), time steps one and two (2) and time
steps one, two and three i.e. complete trajectory (3); the fourth plot is a two-dimensional representation of the complete trajectory; the last plot
depicts the evolution of the energetic resources through time. The last column specifies legends for the different plots.

2.3.3. Trajectories

One characteristic example of trajectory is presented
for each type of larva. Indeed, optimal trajectories are
not unique because there are two sources of stochasti-
city: predation (as in the simple version of the model)
and non-directional swimming when foraging.

Comparing the two trajectories presented in Fig. 4, we
can identify features common to both species and
conclude that, as in the first, simple case, this modelling
framework gives reasonable trajectories, understandable
from our point of view. Indeed, at the beginning of
dispersal, the only requirement for the larva is to survive
because its energetic resources come from its yolk sac
and so it does not need to feed (notice that, in our
representation, the energetic resources are therefore
constant and maximal). Hence, when swimming is
possible (i.e. for Pomacentrids) optimal trajectories go

out from the high predation zone, ensuring the survival
of the larva (plot 1). Then, as death by predation is
negligible, the priority of the larve becomes food
acquisition. Indeed, we can notice that the energetic
resources begin to vary during time step 2. During this
mid-time period, the trajectory is characterized by
vertical movements which are linked to the vertical
migration of the plankton: when the larva needs to feed,
it moves to the high plankton density layer, hence
maximizing its probability to find food (plot 2). Finally,
when its swimming abilities are well developed, it comes
back to the island. Approaching the island, predation
risk increases, therefore optimal trajectories are those
reaching the island by the sides (North or South in our
geometry) in order to pass through the thinner portions
of the high predation areas, hence maximizing survival
of the larvae (plot 3).
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We can identify a main difference between these
trajectories, namely that Pomacentrids trajectories stay
closer to the island than Acanthurids trajectories (this is
easy to notice in the two-dimensional plots of Fig. 4).
This is probably related to the greater duration of the
pelagic phase of Acanthurids and also to their greater
swimming abilities that allow them to travel further while
still being able to come back to the island to recruit.

The absolute value of the maximum self-recruitment
rate, which is also provided by the model, is of little
interest here. Firstly, because self-recruitment is not
usually the only possible conclusion of the larval phase
(natural situations of completely isolated islands are rare).
And also because the parameterization of the model does
not represent precise field situations, nor are they
intended to provide generality. Nevertheless we can notice
that the recruitment rate is two orders of magnitude lower
in Acanthurids than in Pomacentrids. Once again, this is
probably related to the greater duration of their pelagic
phase that implies a greater global mortality rate.
However, this may also be related to their incapability
of swimming during the first part of dispersal. Indeed, all
Acanthurids trajectories beginning in the lee of the island
will pass completely through the predator-rich zones and
this will result in high mortality. As shown in Fig. 5, this is
not true for Pomacentrids as they can use their
rudimentary swimming abilities combined with predomi-
nant currents to avoid these high predation zones, hence
diminishing their early mortality rate.

We noticed that the differences in the behavior of our
two theoretical larvae, implied by their reproductive
strategy, have important consequences on their optimal
pelagic trajectories. The differences observed globally fit
with the few observations of fish larvae densities around
tropical islands (Leis, 1986; Leis and Goldman, 1987).
Indeed, species with non-pelagic eggs are more abundant
in the vicinity of the island, on the downwind side of the
island, which is interpreted as retention. On the contrary,
species with pelagic eggs are found mainly on the
windward side of the island. In that case, they are
supposed to come from an upstream reef because they
were not retained there. In our case, recruitment on
another reef is not possible; nevertheless, we remarked
that Pomacentrid larvae (demersal eggs) are more
retained in the vicinity of their natal island than
Acanthurid larvae (pelagic eggs). This underlines the
fact that the trajectories identified by this model seem
correct and that some behavioral parameters are crucial
in determining dispersal trajectories and recruitment rate.

3. Discussion

3.1. Model contributions

Firstly, the contributions of this modelling approach
to present research can be highlighted. From a model-

current current
T — %&\\
# @
T
S e — 1 A / 1
3 ——Z/ 24
Acanthuridae Pomacentridae

Fig. 5. Schematic comparison of the beginning of dispersal for
Acanthurids and Pomacentrids. Trajectories, starting on the down-
wind side of the island, are plotted in bold. The three areas define the
area of high predation and resources (1), mean predation and resources
(2), low predation and resources (3). Notice that the Acanthurids
cannot swim and are only driven by the uniform current field
represented. They stay in the high predation areas and are mostly
eaten (stars). On the contrary Pomacentrids can swim and flee from
these areas, hence few are eaten.

ling point of view, the use of optimal control in larval
dispersal is new. To our knowledge, the only other study
that has used this framework is Armsworth (2001). He
modelled the end of the pelagic phase of larval fishes, in
the vicinity of a coral reef, finding trajectories that
minimize energetic expenditure or transit time to reach
the reef. In our study, optimal control is calculated from
the whole environment on large temporal and spatial
scales, hence widening the scope of this modelling
framework. The interesting point of this method is that
it enables us to focus on the reaction of the larvae to
environmental conditions rather than on the environ-
ment itself. This study is the first to place such emphasis
on larval behavior. As noted previously, the majority of
models of larval dispersal focus first on current
description and then add particles in this model with
absent (Dight et al., 1990; Black et al., 1991) or simple
(Wolanski et al., 1997; Porch, 1998; Armsworth, 2000)
reactions to this current field. The originality of our
model is the possibility to describe a more complete
environment (currents but also predators and plankton),
and above all to integrate this whole environment to
choose a larva’s reaction. Therefore, there are no fixed
bounds to the complexity of larva’s reactions and of the
trajectories they induce. Indeed, they will be driven by
the environmental level of detail. This ensures broad
applications and very flexible use of this kind of models.

3.2. Why optimal strategies?

In this study, we consider that the larvae follow a
behavioral strategy (i.e. decision rule) such that, on
average, their decisions induce the greatest recruitment
(here necessarily self-recruitment) probability. We con-
sider that this is an optimality criterion and hence define
the trajectories induced by these decisions as “optimal
trajectories”. Nevertheless, as remarked before, these
trajectories still have a stochastic component (predation,
swimming direction when foraging). Furthermore, this
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model aims at evaluating the importance of such
behavioral strategies and should not be viewed as a
description of the behavior of each larva during its
pelagic stage. Therefore the real question is not whether
larvae do react optimally but rather why trajectories
that result in a maximization of the recruitment rate are
interesting.

First of all, fish larvae could be selected toward the
optimal strategy presented here. Indeed, the great
mortality occurring during the pelagic stage (Doherty,
1983) is likely to act as a strong selective pressure.
Selection is usually considered to occur on fitness,
related in some way to the number of offspring per
individual (Mylius and Metz, 2003, in prep.). Never-
theless, in order to reproduce, an individual has to be
alive. Therefore, we could consider that selective
pressure on reproduction would be transferred on
survival during the larval, pre-reproductive, stage. This
possible selective pressure could lead the mean pheno-
type (here a dispersal strategy) of fish populations
toward a maximization of survival during the pelagic
interval. Therefore, from an evolutionary point of view,
it is interesting to study the ideal case of a population in
which all fishes choose the optimal strategy as it could
be an evolutionary end point.

Be that as it may, optimal trajectories are of interest
even if fish larvae are not brought to maximize their
recruitment rate by natural selection. Indeed, let us
consider a population in which the behavioral strategy
during dispersal is not under selection. Many pheno-
types (strategies) should be present. In such a popula-
tion, it is likely that the very few larvae that survive and
recruit on an island are those having followed trajec-
tories along which survival is high. There is little
probability that they followed these trajectories only
by chance. Therefore these larvae are probably those
having chosen a strategy that we define as optimal: a
strategy which maximizes survival. From this point of
view, the great mortality occurring during the pelagic
interval can be considered as a ““filter” that lets only the
best strategies through. Studying the trajectories in-
duced by these optimal strategies is therefore related to
real successful trajectories of fish larvae.

Finally, it has to be highlighted that self-recruitment
is a pre-requisite in this study. Therefore, the results
produced above do not allow inference about the
optimality of a self-recruiting strategy as opposed to a
dispersing strategy. As mentioned before, the quantity
optimized here is survival along self-recruiting trajec-
tories. Hence, our results do not mean that dispersing to
another reef cannot be optimal.

3.3. Perspectives

This study provides a theoretical basis for subsequent
work on trajectories of self-recruiting larvaec. Many

important features of the environment and of the
behavior or the larvae are described here and some of
them at least (differences in swimming abilities, in the
duration of the pelagic stage) have important con-
sequences on the outcome of the dispersal phase. This
has two implications for future research.

Firstly, a better parameterization of the present
model is needed. For example, other studies pointed
out the importance of the current field in explaining the
spatial distribution of fish larvae (Leis, 1986, 1993;
Cowen and Castro, 1994). Therefore it seems interesting
to provide our model with a more realistic current
field. Data used here are particularly simple for
presenting and testing purposes but it does not prevent
precise field data, concerning currents, predators,
zooplankton or larval abilities from being incorporated
in the model. Once these data are available, field
validation of the model has to be considered. We
remarked that our initial results roughly agreed with the
few field studies available concerning fish larvae
distribution around coral reefs. This has to be studied
further and, as mentioned before, the restriction to self-
recruitment alone should facilitate this validation of the
model.

If the absolute value of self-recruitment rate is of
little interest here, its dependence on various factors
of the model is of great concern. For example, we
noticed that differences in swimming abilities have
important consequences on recruiting trajectories. This
has to be quantified and compared to other factors. Self-
recruitment rate is a numerable currency which allows
such a comparison, using sensitivity analysis. This
quantification permits re-interpretation of qualitative
studies of the influence of various factors on self-
recruitment rate such as the work of Sponaugle et al.
(2002).

In this study, we considered that self-recruitment
is the only outcome for the pelagic stage of coral reef
fish larvae. Nevertheless, completely isolated reefs are
rare and often, if not always, some larvae self-recruit
and others disperse to surrounding reefs. Focus is at
first on self-recruitment, for mathematical simplicity
and ease of field validation, but the question of
self-recruitment versus dispersal could also be tackled
with this model, for example by adding a second
region of positive final gain, which represents another
island. In this perspective, not only would factors
that influence self-recruitment rates be emphasized,
but also crucial parameters that decide between
dispersing or self-recruiting could be highlighted.
Once these factors are known, predictions can be
made using the model and verified in precise field
situations.

We provide here what we think is an efficient
modelling framework to represent the dispersal phase
of marine organisms, with an emphasis on the active
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behavior of dispersing particles. This model allows both
study of the self-recruiting trajectories and of the
dependence of this phenomenon on various factors,
including the development of the abilities of the larvae,
the length of the larval phase, the distribution of
predators and zooplankton or the intensity of the
current field. Furthermore it has a broad range of
applications from detecting general features of dispersal
to directing future field studies.
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Appendix

This appendix describes the choice of the last two
optimal decisions in the simple model, presented in
Section 2.2.2.

Last optimal decision: u*(0,x, T — 1)

V0,x,T — 1)

Foraging

=p x max(V(0+ A°, x + Ax°, T,

Swimming

V(0 — A0', x — Ax', T))

= p x max((0+ A0%) x 1y, puy).
(0~ A0') X 1y g0 o).

Now, 1, a0_9; = 0 since x>0 and Ax’ > 0. Thus

V(©O,x,T —1)=p x (0 — A0") x 1, pn_g,

u?(0,x, T — 1) = 1.

Therefore, the optimal decision at the time 7 — 1 is
swimming if x = Ax!. It means that the larva will swim
if it can reach the reef by choosing swimming. However,
if x is not equal to Ax' (it cannot reach the island), the
value function (V') equals zero for any decision. It means
that the larva cannot recruit whatever happens. There-
fore it does not have any favored decision for its last
choice.

Before the last optimal decision: u*(0,x, T — 2)
V(O,x, T —2)

Foraging

=pxmax(V(0+ A0°,x + Ax°, T — 1),

Swimming

V(O — A0, x — Ax', T — 1))

=p x max((0 + A0° — A0") x 1, po_nyiy,
(0 —2A0") X 1 _pv_aw).

As we cannot have at the same time x = Ax! — Ax°
and x = 2Ax!', it comes that:

V(O,x, T —2)=p x (0 + A0° — AO")
X l{x:Axlfoo} + (0 — 2A91) X 1{x:2Ax'})-

o If x = Ax! — Ax?, then u#(0,x, T — 2) = 0, the larva
chooses to forage. This result seems natural. When
the larva chooses to eat at time 7 — 2, it is taken
away from the reef (Ax°). So, it will be at the correct
distance (Ax!) at time T — 1 in order to come back to
the island. The larva optimizes its energetic resources
value.

o If x=2Ax!, then u"(0,x,T—2)=1, the larva
decides to swim. Here again, this choice is natural
since swimming brings the larva to a distance Ax!
from the coral reef. It will only have to swim once
more at the last time step to reach the island.

The explicit calculation of V(0, x, t) is becoming more
and more complex. Scilab programs will numerically
find all optimal decisions, but we have noted that
solving Bellman’s equation gives very intuitive results at
time 7'— 1 and T — 2.
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