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Overcoming the data scarcity... and then overflow





The problem

DATA



One solution

Pros 

High taxonomic resolution 

Cons 

Requires a lot of time (of experts) 

Only abundance information 

Not easily replicable (human error 
scarcely evaluated)
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Various classifiers

Davis et al.: Real-time observation of plankton taxa

MATERIALS AND METHODS

VPR system overview. The VPR system includes an
underwater unit with video and other sensors, and a
deck unit for data logging, processing and display
(Fig. 1). For the studies reported here, the VPR under-
water unit consisted of 2 analog video cameras (high
and low magnification) synchronized at 60 Hz to a
xenon strobe, environmental and flight control sensors
sampling at 3 to 6 Hz (pressure, temperature, salinity,
fluorescence, beam attenuation, downwelling light,
pitch, roll, velocity and altitude), and a data tele-
metry system. The cameras, strobe and sensors were
mounted on a frame attached to the bottom of a 1.22 m
V-fin depressor. The underwater unit was towed at
4 m s–1 using a 1.73 cm (0.68 in) diameter triple-armor

electro-optical cable. A fiber-optic transmitter sent
video and sensor data to a receiver mounted in the
winch drum on the ship where it subsequently passed
through electrical slip rings and deck cable to the deck
unit in the ship’s lab.

The deck unit (Fig. 1) consisted of a video record-
ing/display system, an environmental/navigational
data logging system, an image processing system and
a data display system. Video was time-stamped at
field rates (60 fields s–1, fps) and recorded on SVHS
recorders. The video time code was synchronized with
time from the P-code Global Positioning System data
string. Latitude and longitude were logged together
with video time code and the VPR environmental data
at 3 Hz on a PC and a Silicon Graphics Inc (SGI) work-
station. 
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Fig. 1. Video Plankton Recorder system showing underwater and shipboard components. The VPR is towyoed at ship speeds up
to 4 m s–1, while video is processed on board to extract in-focus images, identify them to major taxa and display their distributions.
Abbreviations are: Shipboard Unit—FDPC = flight display PC, VH = Video input High magnification, VL = Video input Low mag-
nification, VMH = Video Monitor High magnification, VML = Video Monitor Low magnification, TCG = Time Code Generator,
VTRH = Video Tape Recorder High magnification, VTRL = Video Tape Recorder Low magnification, DLPC = Data Logging PC,
PS = Power Supply, SGI = Silicon Graphics Inc. workstation, TCR = Time Code Reader, SS20 = Sparcstation 20, IP = Imaging
Technologies Image Processor, 1 = power out to underwater unit, 2 = environmental sensor data from underwater unit, 3 = navi-
gational data from ship (latitude, longitude, bottom depth), 4 = data out to flight display computer, 5 = serial time code from TCG
to DLPC, 6 = environmental and navigation data to SGI, 7 = video to time code reader, 8 = video from TCR to image processor, 9 =
serial time code to SS20, 10 = data transfer between SS20 and IP, 11 = data transfer between SGI and SS20. Underwater unit—
C = conductivity sensor, TR = Transmissometer, MCE = Main Control Electronics, L = Light sensor, A = Altimeter, FL = Fluorometer, 

T = Temperature sensor, CA = Cameras (high and low magnification), F = Flowmeter, S = Strobe

Since 2004 (on a Sun SPARCstation 20!) 

RandomForest 

Support Vector Machines 

Naïve Bayesian Classifier 

Various neural networks 

... 

+ combination of the above 



Imperfect automatic classification

these cases, the learning phase either required an extremely
large amount of memory (the computer used was a Pentium
IV 1.6 Ghz with 1-Gb RAM memory) or took too long (the
process was stopped after 3 h of calculation). Other
methods appear much more robust to the number of taxa
simultaneously recognized (random forest and discriminant
vector forest performed almost equally well with the
simplified and detailed training sets, in terms of both
accuracy and speed). They are among the best methods in

each case. It is probably possible to develop even more
detailed training sets with such methods.
Combined methods appear more efficient in this context,

particularly double bagging with linear discriminant anal-
ysis and the new discriminant vector forest method. With
the latter, we reached an accuracy level of almost 75% with
the detailed training set.
A supplementary algorithm tags objects that are classified

with low accuracy by the discriminant vector forest method
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Figure 8. Composition of the detailed training set and number of items in each group. The ‘‘reject’’ group is the same as in Figure 7.

Table 1. Comparison of various recognition methods with both the simplified and the detailed training set (100 replicates with random 2/3

training set and 1/3 test set). Accuracy is the mean total recognition success as evaluated on the 100 replicates of the test set only. Speed is

the time required to perform one whole cycle (trainingC test). The symbol ‘‘e’’ means that the method did not succeed in making the

training set: either the 1-Gb RAM memory was exhausted or the operation took more than 3 h.

Method

Simplified (8 groups) Detailed (29 groups)

Accuracy (%) Speed (s) Accuracy (%) Speed (s)

Linear discriminant analysis 76.8 0.1 70.6 0.2

Quadratic discriminant analysis 82.9 0.2 e e
Mixture discriminant analysis 81.4 2.4 e e
Flexible discriminant analysis 77.6 1.8 72.7 6.0

k-nearest neighbour analysis 77.2 0.1 60.4 0.1

Learning vector quantization 76.6 0.3 60.0 0.4

Tree method 72.0 0.5 55.1 2.3

Recursive partitioning 72.8 1.2 57.7 3.1

Bagging (bootstrap on trees) 81.7 3.6 69.8 8.0

Double bagging with LDA 85.0 10.3 74.6 25.5

Double bagging with k-n.n. 81.9 8.9 70.1 13.8

Random forest 83.9 1.7 73.4 2.5

Support vector machine 68.5 1.2 47.8 1.9

Neural network 73.9 25.8 e e
Discriminant vector forest 83.6 2.7 74.4 4.0

523Identifying and counting zooplankton

2004



Imperfect automatic classification

length measurements (data not shown), although feret
diameter typically showed the best relationship.

Comparison of automated measurements of surface
area (as area excluded) with manual measurements of
the same individuals was carried out for three taxa
(copepods, euphausiids and chaetognaths: Fig. 6). In all
cases, there was a linear relationship between manual
and automated measurements. The automated measure-
ments were somewhat higher for copepods and euphau-
siids, but lower for chaetognaths. These results suggest
that automated measurements are consistent and

reproducible, although their values may differ somewhat
from manually determined values.

The relationships between C and N content and auto-
mated measurements of linear or areal dimensions were
well described by power curves (Fig. 7). Much of the
scatter in the relationships shown in Fig. 7 is attributable to
the mixture of different species included in these analyses.

The exponents for C and N were similar to each other,
implying relatively constant C:N ratios. In the case of both
copepods and chaetognaths, the exponents relating C or N
content to linear dimensions (feret diameter) were close to

Fig. 3. Dependence of (A) recall (true positives) and (B) contamination (false positives) rate on the number of vignettes sorted for a learning set.
Curves are illustrated for eight categories of organisms or objects, and the overall mean.

Fig. 4. Dependence of (A) recall (true positives) and (B) contamination (false positives) rate on the number of categories predicted by the
classifier, using different classifier algorithms (see Table I).
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Our solution

Pros 

Mostly replicable and quite easy to 
evaluate 

Provides information about size, 
transparency, etc. = functions 

Can be done in situ 

Cons 

Taxonomic resolution from 
automatic classification too low for 
many ecological studies 

Still requires human time (not 
necessarily much faster)
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Current flow 
of images

ZooScan = 1 Bpx/y, UVP = 8.6Bpx/y, ISIIS=25Tpx/y 
⟹ Several million objects to classify per year



Kaggle 2015 
competition

International competition for the 
classification of plankton images 

60k images to classify in ~120 groups 
from a training set of 30k 

1049 teams for a prize of $150k 

Top 10 teams all used CNNs 

83 to 85% accuracy 

SparseConvNet in 3rd place



CNNs and 
SparseConvNet

https://github.com/
btgraham/SparseConvNet 

All custom C++ 

Sparsity 

Fractional Max-Pooling

https://github.com/btgraham/SparseConvNet
https://github.com/btgraham/SparseConvNet


SparseConvNet + 
Zooscan

10k images for training, 80k for testing 

Zooprocess+RF vs. SparseConvNet 

Accuracy 

but low quality images and much 
resizing

Nb classes RF CNN
20 60.5 61.2

51 48.5 58.1
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resizing
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SparseConvNet 
+ ISIIS

50k images training 

24M images in 120 classes; 
75k tested 

87% overall accuracy 

But the most biologically 
interesting classes are the 
rare ones (and accuracy is 
lower for those)



Current plans

CNNs limitations 

only image data 

slow 

needs lots of training data 

Extract features from CNN, combine 
them with size (and metadata), train 
RandomForrest 

Integrate this as a “one-click” solution 
in a web application for plancton 
image classification



Future challenges

New smart sensors 

Take the image and extract 
“particles” 

Need to send data in real time 

Classification needs to be done 
inline, with little power (0.1W at 
0.1fps)



One more thing...



Classification 
score
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All algorithms produce a 
score, not a Yes/No answer 

What if we could throw 
out bad scores?
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151k images of organisms 
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Set score thresholds to 
reach 99% precision 

⟹ discard 70% of objects 

Compare the reference, 
full dataset and the 
thresholded one
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Classification 
score

151k images of organisms 

All automatically and 
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reach 99% precision 

⟹ discard 70% of objects 
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full dataset and the 
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Merci pour 
votre attention


