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Swimming speeds of Mediterranean
settlement-stage fish larvae
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Life history of coastal organisms

Juvenile
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FEUCTUATIONSUIN ThHE GREAT
FISHERIES OF NOREFHERN EUROPE

It would be especially desirable to ascertain the extent of such movement, and
how far the young fry are able to return, of their own volition, to such

localities as offer favourable condition; for their further growth.



Swimming speed measurement

Mollidae
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In body lengths per second

species

Liza sp1 -

Chromis chromis -

Spondyliosoma cantharus =
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Diplodus annularis =
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Ecological consequences:

model advection + swimming

Current field Advection + swimming
(MARS3DMed) (CMS)
1.2 km grid, 3h shoreward swimming

June 2014 between 0 and 18 cm/s




Model seeding

50 particles x 650 sites x 3 depths x 25 days

> 2,500,000 virtual larvae per simulation

Map settlement % after 4 days




Settlement
probability map

Settlement possible from
>20km away in only 4 days
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FLUCTUATIONSSINTHE GREAT
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It would be especially desirable to ascertain the extent of such movement, and
how far the young fry are able to return, of their own volition, to such

localities as offer favourable condition; for their further growth.

From very far!
Advection is (almost) negligible compared to swimming at the end of the larval stage
Key research perspectives
More species to examine generality
Mechanism for incredibly high speeds in larvae

Better understanding of orientation over large scales
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