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• We propose a simple filtering method to improve classification precision of images.
• It focuses on classification probabilities and discards low confidence objects.
• It successfully resolved the in situ fine scale distribution patterns of plankton.
• It requires very limited manual identification work.
• It is applicable to all machine learning methods.
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a b s t r a c t

Imaging systems were developed to explore the fine scale dis-
tributions of plankton (<10 m), but they generate huge datasets
that are still a challenge to handle rapidly and accurately. So far,
imaged organisms have been either classified manually or pre-
classified by a computer program and later verified by human
operators. In this paper, we post-process a computer-generated
classification, obtained with the common ZooProcess and Plank-
tonIdentifier toolchain developed for the ZooScan, and testwhether
the same ecological conclusions can be reached with this fully au-
tomatic dataset and with a reference, manually sorted, dataset.
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Plankton distribution
Machine learning
Big dataset

The Random Forest classifier outputs the probabilities that each
object belongs in each class and we discard the objects with un-
certain predictions, i.e. under a probability threshold defined based
on a 1% error rate in a self-prediction of the learning set. Keeping
only well-predicted objects enabled considerable improvements
in average precision, 84% for biological groups, at the cost of di-
minishing recall (by 39% on average). Overall, it increased accuracy
by 16%. For most groups, the automatically-predicted distributions
were comparable to the reference distributions and resulted in the
same size-spectra. Automatically-predicted distributions also re-
solved ecologically-relevant patterns, such as differences in abun-
dance across amesoscale front or fine-scale vertical shifts between
day and night. This post-processing method is tested on the clas-
sification of plankton images through Random Forest here, but is
based on basic features shared by all machine learning methods
and could thus be used in a broad range of applications.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

From the centimetre to kilometre-scales, hydrodynamics, predator–prey interactions and be-
haviour strongly structure the patchy distributions of planktonic organisms in pelagic environments
(Davis et al., 1992; Pinel-Alloul, 1995; Lough and Broughton, 2007). At mesoscales (10–100 km) and
submesoscales (<10 km), plankton distributions are primarily determined by hydrological structures
like fronts and eddies (Belkin, 2002; Belkin et al., 2009; Luo et al., 2014). For example, convergent
flows at frontal features can increase primary production (Grimes and Finucane, 1991) and mechani-
cally concentrate organisms (Bakun, 2006; Olson et al., 1994). However, the influence of these struc-
tures may be counter-balanced by behaviour or other biotic processes. Indeed, at fine scale (<1 km),
diel vertical migrations can be a strong driver of plankton distributions (Benoit-Bird and McManus,
2012; Neilson and Perry, 1990). At microscales (<1–10 m), biotic interactions such as competition
and predation are likely to generate vertical gradients in the distribution of zooplankton. For exam-
ple, in Monterey Bay, predator avoidance is thought to vertically separate copepods, phytoplankton
thin layers, and gelatinous zooplankton predators (Greer et al., 2013). Off the coast of Massachusetts,
interactions between internal waves and foraging drive a temporary overlap between layers of high
copepod concentration and ichthyoplankton (Greer et al., 2014).

Historically, zooplankton and ichthyoplankton distributions have been sampled with pumps
(Herman et al., 1984) and regular or stratified plankton nets (e.g. regular: WP2, Bongo; e.g. stratified:
MOCNESS, BIONESS, MULTINET; Wiebe and Benfield, 2003). However, even depth-stratified nets
cannot typically resolve the fine and microscale processes at which biotic interactions occur, because
they usually sample (and integrate) over at least 10 m vertically and much more horizontally. While
pumps offer finer spatio-temporal resolution, they are often limited to surface layers (<10 m depth
— Boucher, 1984; sometimes down to 100m depth — Herman et al., 1984) and sample much smaller
volumes (on average 50–60 L min−1 vs. 7500 L min−1 for a small plankton net; Wiebe and Benfield,
2003).

In the last two decades, in situ imaging systems were developed with the aim of sampling mi-
croscale processes in the plankton and accelerating data processing using efficient automatic clas-
sification techniques (MacLeod et al., 2010; Wiebe and Benfield, 2003). Several imaging systems
have emerged, tackling different ecological questions by targeting different size spectra of organisms.
The Video Plankton Recorder (VPR; Benfield et al., 1996) and the Underwater Vision Profiler (UVP;
Picheral et al., 2010) sample particles and zooplankton. The Shadow Image Particle Profiling Evalua-
tion Recorder (SIPPER; Samson et al., 2001), the ZOOplankton VISualization imaging system (ZOOVIS;
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Bi et al., 2013) and the In Situ Ichthyoplankton Imaging System, used for this study (ISIIS; Cowen and
Guigand, 2008), target large zooplankton up to several centimetres. ISIIS has been specifically de-
signed to sample fish larvae that are patchy and rare (Cowen et al., 2013). Therefore, it samples larger
volumes of water compared to other instruments (ISIIS: from 108 to 168 L s−1; UVP: typically 8 L s−1,
up to 20.0 L s−1; SIPPER 9.2 L s−1; ZOOVIS 3.6 L s−1; VPR: 10–17mL s−1) and has proved to be particu-
larly suited to describe the fine-scale distribution of both ichthyoplankton (Cowen et al., 2013; Greer
et al., 2014) and other taxa, including gelatinous zooplankton (Luo et al., 2014;McClatchie et al., 2012).
These imaging systems generate large datasets of images. For example, in one hour, ISIIS records over
200 billion pixels (the equivalent of more than 200 GB of greyscale TIFF images), usually yielding
several hundred million objects of interest, that have to be identified. Manually processing such big
datasets has to be limited to few groups of interest (e.g. Greer et al., 2015, 2014; Luo et al., 2014 and
McClatchie et al., 2012) but remains time prohibitive. Developing accurate automatic identification
processes for such datasets is still a challenge (Benfield et al., 2007; Cowen et al., 2013; Culverhouse
et al., 2006) that needs to be solved in order to fully resolve microscale processes.

Imaging data are typically handled in a three-step process: first, detecting and segmenting relevant
objects (or regions of interest) from raw images; then measuring features of each object (such as size,
aspect ratio, etc.); and finally using these features to classify the objects into biologically/ecologically
relevant groups through machine learning algorithms. Several automatic identification procedures
have already been tested on plankton datasets of a few thousand images using various classifiers:
Random Forest (e.g. Bell and Hopcroft, 2008), Support Vector Machines (e.g. Hu and Davis, 2005),
Bayesian models (Ye et al., 2011) or neural networks (e.g. Davis et al., 2004). Some also combined
several classifiers to improve prediction accuracy (Hu and Davis, 2005; Li et al., 2014; Zhao et al.,
2010). While the algorithms differ, all of these classifiers have in common the fact that they result
in a final score (often a probability) for an object to be in each class and attribute the object to the
class with the highest score. This predicted class is often the only information that is retained from
the classifier. So, while classification is typically viewed as a yes-or-no problem, the real outputs from
the classifiers are actually continuous.

In this study, we take the example of the commonly-used image processing and identification
toolchain ZooProcess and Plankton Identifier (PkID) (Gorsky et al., 2010). The software was first
developed for the ZooScan (laboratory plankton scanner) and then extended to the UVP (Picheral et al.,
2010) and other imaging systems. ZooProcess segments objects from the full image and computes a set
of descriptive features (grey levels, length, width, area, shape, etc.) that are then used by PkID through
various classification algorithms (Support Vector Machine, Neural network, Random Forest, etc.),
althoughRandomForest (Breiman, 2001) has proven to be themost accurate and is nowused routinely
(Gorsky et al., 2010). This software suite is free, open-source, easy to install, and well supported.
Therefore, it is widely distributed worldwide and used by 60 research teams from the tropics to the
poles (e.g. France (Vandromme et al., 2011); New-Caledonia (Smeti et al., 2015) Antarctica (Espinasse
et al., 2012)). It is most commonly used as a computer-assisted identification system, whereby the
classifier proposes identifications that are then validated by human operators for all objects.

ZooProcess and PkID offer appropriate tools to handle ISIIS data but the amount of data generated
by ISIIS makes human validation impractical. For example, validating the identifications of the 1.5
million objects used as a reference in this study took seven full-time months; a few days of ISIIS
deployments typically yield from ten to a hundredmillion objects. However, given the size and spatial
resolution of the dataset, even a subset of it is likely to contain relevant ecological information, at least
at the metre to 10 m scale. Here, we propose to discard objects with a low classification score (i.e. the
least likely to be correctly identified) and assume that all remaining objects are correctly classified,
hence bypassing the validation step. Most other studies compare automatic classification methods
using only classification metrics (e.g. precision, recall). We suggest that a more biologically relevant
approach is to examinewhether the same ecological patterns can be detected in datasets generated by
various methods. Here we compare the same data either manually identified (hereafter the reference
dataset) or automatically classified and further filtered based on classification score (hereafter the
predicted dataset). We specifically explore the fine-scale spatial distribution of zooplankton across a
frontal structure, its relationship with the environment, the size distribution of planktonic groups as
well as their diel vertical migration patterns.
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2. Materials and methods

2.1. Description of ISIIS

The In Situ Ichthyoplankton Imaging System (ISIIS) is a towed underwater imaging system (Cowen
and Guigand, 2008). It uses backlight shadowgraph imaging, which makes it ideally suited for small
and often transparent planktonic organisms in a consistentmanner. The version of ISIIS used herewas
slightlymodified from that of Cowen and Guigand (2008). The line-scan camera imaged a 10.5 cm-tall
field of view with a 50 cm depth of field. With a line-scan camera, the image is created by the
movement of the instrument and scanning at 28 kHz produced a continuous image when towed at
2m s−1 (4 knots). These settings resulted in a sampling rate of 108 L s−1. Additionally, ISIIS is equipped
with environmental sensors recording temperature, conductivity (hence salinity anddensity), oxygen,
chlorophyll a fluorescence and photosynthetically active radiation (PAR) at a rate of 2 Hz.

2.2. Test data

ISIIS was deployed for two transects across the Ligurian current, a coastal jet that creates a
permanent, mesoscale front. The current delineates a coastal, a frontal and an offshore zone, with
characteristic hydrological properties (Sammari et al., 1995) and biological communities (Boucher
et al., 1987). One transect was conducted at night, the other during the following day, in July 2013.
Both transects were conducted on the same line, though the night transect sampled from onshore
to offshore, and the day transect sampled from offshore to onshore. Thanks to moveable fins, ISIIS
sampled the water column in a tow-yo fashion, between the surface and 100 m depth, with a vertical
speed of 0.2 m s−1. The images in this study come from 13 down-casts of the night transect and 7
down-casts of the day transect, which were the only ones fully processed of the ∼26 total up- and
down- casts of each transect.

2.3. Image pre-processing

ISIIS collected a continuous stream of pixels, 2048 pixels in height. The streamwas cut into square
2048 × 2048 frames by the acquisition software (example in Fig. 1). Because the camera was con-
tinuously scanning the same line, a single speckle or scratch along the optical path would create a
continuous streak in the resulting 2D image. These streaks were removed by dividing each frame by
the average of the previous 50 consecutive frames and normalising the result to [0, 255] in grey in-
tensity, a process known as flat-fielding.

2.4. Segmentation

The shadows of planktonic organisms or particles imaged by ISIIS appeared dark on a light back-
ground. All images were thresholded at the 195 grey level; i.e. adjacent pixels darker than 195
(255 = white, 0 = black) were considered as objects of interest. The flat-fielding procedure resulted
in an almost white background andwell contrasted objects (Fig. 1). Therefore, the detection of objects
was not very sensitive to the threshold value and 195 was chosen after a few tests.

Small objects were difficult to identify reliably, even for human operators. Only objects larger than
250 px in area (equivalent to 18 px in diameter for a spherical object) were considered in this study.
With a pixel resolution of 51 µm, this converts to an area of 0.6 mm2 and an equivalent diameter of
920 µm.

All objects with sufficient size and darkness were segmented out of the frames (Fig. 1 exemplifies
which objects were considered and which were not) and the region outside of the object itself was
made pure white. A total of 1.5 million objects were detected.

2.5. Feature extraction

The purpose of this study is to optimise an existing classification procedure a posteriori. Therefore,
the feature extractionwas based on the standard configuration in ZooProcess/PkID and is not described
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Fig. 1. Example of a flat-fielded 2048 × 2048 pixels frame collected by ISIIS. The bounding box of objects extracted and
measured is drawn. Those objects are labelled (Ag: aggregates; Ar: Trachymedusae Arctapodema spp; Ch: chaetognath; Co:
calanoid copepod; Do: doliolid; Ep: Pelagia noctiluca ephyrae; Fl: fish larva; Un: unidentified). Note that, on rare occasions,
some small-bodied and transparent organisms, such as doliolids, were either truncated or split into several objects and then
became hardly identifiable.

in detail here (please refer to Gasparini and Antajan, 2013 and Gorsky et al., 2010). Briefly, 37 features
were measured by ZooProcess, and 9 additional variables were derived by PkID from the original 37
features. These features characterised each object’s size and shape (length of the minor and major
axes of the best fitting ellipse, Feret diameter, circularity, symmetry, aspect ratio), transparency
(five measures of grey levels: mean, mode, standard deviation, minimum, maximum), and aspect
(grey level histogram descriptors such as skewness, cumulative histograms, etc.). When combined,
those features can characterise object classes; for example, small, dark, ovoid objects with a large
Feret diameter compared to their overall size are probably copepods with their antennae extended.
Therefore, they serve as the basis for automatic classification.

2.6. Learning set and classification

Supervised classification techniques require a set of identified and measured objects to learn
the differences between classes based on their features. Our learning set comprised 14 biotic and
abiotic classes with a target size of 200 objects per class (see Table 1), a number which proved to be
appropriate for previous ZooProcess/PkID projects (Gorsky et al., 2010). The most numerous classes
in the data (noise in particular) were also inflated in the learning set, to get a total of 5979 objects.
Objects in the learning set were chosen to be representative of the diversity of each class.
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Table 1
Name, number of objects in the learning set (n) and description of classes. First non-living objects or artefacts, then biological
organisms.

Class n Description, taxonomical identification

Dark aggregates 314 Solid, opaque marine snow
Light aggregates 489 Marine snow (larvacean houses, mucus, etc.)
Fibres 433 Thin fibres and faecal pellets
Noise 2296 Noise generated by water density changes
Tentacles 224 Pelagia noctiluca tentacles

Copepods 349 Mainly calanoid copepods
Doliolids 209 Thaliacean, Family Doliolidae
Fish larvae 289 Fish larvae
Trachymedusae 200 Trachymedusae (e.g. Arctapodema spp)
Diatom chains 342 Phytoplankton, diatoms chains
Acantharian radiolarians 213 Radiolaria, Order Acantharia
Radiolarian colonies 255 Radiolaria, Order Colodaria, incolonies
Solitary radiolarians 267 Radiolaria, Order Colodaria, solitary
Shrimps 99 Shrimp-like organisms (e.g. Mysidacae or Euphausiacae)

All 1.5million segmented objectswere classified into these 14 classes by a Random Forest classifier
using the 46 measured features (Gorsky et al., 2010). The parameters of the classifier were left at the
appropriate defaults in PkID: 100 trees, bagging of 1, 6 features randomly selected per tree, leaf size
of 2 objects.

Finally, three trained operators validated the classification of each object, yielding a completely
manually-identified dataset of 1.5 million objects, hereafter referred to as the reference dataset.

2.7. Data filtering and optimisation of the classifier precision

To detect meaningful ecological patterns in the distribution of a computer-predicted class, there
needs to be sufficiently high confidence that objects in that class belong to the same taxonomic
group. In terms of classifier performance, this requires high precision (precision = proportion of
correctly classified objects in a predicted class). With low precision, a predicted class would be a
heterogeneous mixture of various taxonomic groups, the distribution of which cannot be interpreted
ecologically. Conversely, for high frequency imaging datasets, the data are often in sufficient quantity
that a subsample of the whole dataset would be enough for detecting ecological patterns. In terms of
classificationmetrics, a low recallmaybe acceptable (recall=proportion of the total number of objects
of a class that are predicted in that class). Therefore, we suggest that, to detect ecological patterns
in a high frequency dataset, particularly for common taxa, precision is more important than recall.
To test this hypothesis, we filtered out the most likely mistakes in the computer-predicted dataset
(to increase precision), at the cost of discarding some correctly identified objects (hence decreasing
recall), and then compared the resulting dataset against the reference set.

The probabilities for each object to be in each class (i.e. the final output of the classifier) were
used as the filtering criterion. All objects assigned to a given class were ranked in increasing order
of probability. All objects with probability above a threshold were kept and assumed to be correctly
identified; other objects, with probability equal to or lower than the threshold, were considered to be
potentially wrong andwere discarded. Since precision needs to be controlled, the threshold should be
set to result in a given precision. For example, picking the probability of the first wrongly identified
object as the threshold would yield 100% precision (all objects ranked above the first false positive
are correctly classified). Here, a 1% error rate (99% precision) was deemed acceptable. Error rates
lower than 1% resulted in discarding 3% more objects while improving precision by only 0.2. Higher
error thresholds resulted in low precision when applied to the whole dataset (average precision with
threshold at 10% = 54, at 5% = 60.1, at 1% = 76.9). A 1% error threshold allowed us to increase
precision significantly and still keep a representative percentage of objects.

The computation of thresholds was done with the learning set only, because in operational
conditions, only the identifications of the objects in the learning set are known. The class probability
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of each object in the learning set was predicted using 2-fold cross-validation repeated 50 times, using
the Random Forest classifier in PkID. The probabilities were averaged over the 50 repetitions, objects
were assigned to the class of highest probability, andprobability thresholds at 1% errorwere computed
in each class. Those thresholds, computed on the learning set, were then applied to the predictions of
the 1.5 million objects and the subset of objects that was kept constituted the predicted dataset. Thus,
once the objects in the learning set are identifiedmanually (which is required for prediction anyway),
this precision optimisation method requires only computation, no further human validation effort.

2.8. Consequence of data filtering on classification metrics

By construction, the chosen thresholds resulted in exactly 99% precision on the learning set. Be-
cause all 1.5 million objects in the reference set were actually identified in this exercise, the precision,
recall and F1 score (2× precision × recall/(precision + recall)) could be computed for each class over
the whole dataset, before and after the filtering process. This allowed us to check whether the preci-
sion after filtering approached 99% on the whole dataset as well and how much this improvement in
precision costs in terms of decrease in recall.

2.9. Comparison of size spectra

The size structure of planktonic communities is often considered as a proxy to study the transfer
of energy through the food web and the export and sequestration of carbon (Legendre and Le Fèvre,
1991). It could be expected that smaller objects would be less defined, would therefore be predicted
with lower confidence (i.e., lower probabilities) andmay be preferentially filtered out by our method.
To assess this, size spectra (i.e., probability density distributions of sizes) were estimatedwith a kernel
method (Gaussian kernel with a 0.25 mm standard deviation) and compared in the reference and
predicted dataset.

2.10. Statistical comparisons of spatial distributions

Individual objects were counted over 1 m depth bins along the undulating trajectory of ISIIS and
counts were transformed into concentrations by dividing by the volume sampled in each bin. This
resulted in maps of the concentration of each class of organism across depth (0–100 m) and distance
from the coast (0–60 km) for each transect (for examples see Figs. 3 and 4).

The similarity between the maps for the reference and predicted datasets was assessed using the
t-test modified by Dutilleul (Dutilleul et al., 1993; H0: no correlation between the maps, H1: signifi-
cant correlation between the maps), as well as the Pearson and Spearman correlation coefficients. On
amap, observations close to each other are usually similar; this spatial autocorrelationmeans that ob-
servations close to each other are not independent and that the number of actual degrees of freedom
is lower than the apparent sample size. The Dutilleul t-test corrects the number of degrees of freedom
based on the spatial autocorrelation of the data (computed as Moran’s I) and is therefore appropriate
to avoid over-estimating the similarity of spatial patterns.

Because diel-vertical migration is such awidespread behaviour inmarine ecosystems (Hays, 2003)
and strongly influences survival through predator-avoidance and foraging in many taxa (Neilson and
Perry, 1990), data were specifically inspected in the vertical dimension. Average vertical distributions
were computed for each group and each transect (hence separating day and night). Reference
and predicted vertical distributions were compared with the version of Kolmogorov–Smirnoff test
modified by Solow et al. (2000), which specifically takes into account autocorrelation along depth
caused by the patchiness of plankton.

By construction, concentrations were lower in the predicted dataset than in the reference dataset,
because the former is a subset of the latter. Before the comparisons described above, concentrations
were normalised to amaximumvalue of 1 for each class in each transect, by dividing by themaximum
concentration recorded. This puts the focus on distribution patterns, rather than actual concentration
values, which were poorly estimated when recall was low anyway.
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Finally, the predicted and reference datasets are not independent (one is a subset of the other) and
the absolute values of the test statistics and p-values are therefore biased. The relative values, among
classes, are informative however.

2.11. Comparison of ecological patterns

The frontal structure across which the transects were sampled is characterised by an in-
shore–offshore gradient of increasing salinity, with a front that can be delineated by the 38.2 and
38.3 isohalines (Sammari et al., 1995) and is expected to strongly structure zooplankton communi-
ties (e.g. Boucher, 1984 and Pedrotti and Fenaux, 1992). Beyond comparing the distribution maps for
the reference and predicted datasets statistically, the results were interpreted with respect to the
frontal structure to check whether the ecological patterns were the same. In addition, the relation-
ships between planktonic abundances and environmental variables were inspected in the reference
and predicted datasets. The variables inspected were: salinity, which best marks the front, temper-
ature, which is strongly stratified vertically, chlorophyll a fluorescence, which marks a clear Deep
Chlorophyll Maximum (DCM), and oxygen concentration, which depends both on the frontal struc-
ture and on the DCM. When the relationships could be considered linear, the slopes were estimated
through Generalised LinearModels (GLM)with Poisson errors and statistically compared between the
two datasets using ANOVA.

Similarly, beyond comparing vertical distributions statistically, we assessed whether the range
and strength of diel vertical migrations could be as readily detected in the predicted dataset than
in the reference dataset. Within each class, day and night distributions were compared with the
Solow–Kolmogorov–Smirnov test and the value of its statistic was compared between reference and
predicted data. The day–night shift in the depth centre of mass of the distributions (mean of depth
weighted by abundance at that depth, Zcm; Irisson et al., 2010) was computed and compared between
the reference and predicted datasets.

2.12. Data selection

Abrupt changes in water temperature around the thermocline generated large density differences,
which are unfortunately well captured on shadowgraphs. These numerous objects (n = 1,287,302)
were classified as ‘‘Noise’’. Another abundant class of objects were tentacles of the medusa Pelagia
noctiluca (n = 8106), which occasionally got stuck on ISIIS and were imaged constantly. These two
classes of objects are not biologically relevant in the present study, but were abundant and predicted
with high precision (>95%), and were thus both omitted from the subsequent analyses.

3. Results

3.1. Consequences of data filtering on classification metrics

Discarding low probability images considerably increased precision, by 37% on average (Table 2).
While probability thresholds were set to yield 99% precision on the cross-validated learning set,
precision was lower when the thresholds were applied to the whole dataset. This was expected,
because the ∼6000 images in the learning set cannot fully represent the variability in the whole
dataset (1.5 million images). The average precision of the biological categories after filtering was 84%.
The trachymedusae and Acantharian radiolarians displayed the lowest precision (61.9% and 65.4%
respectively) but this alreadywas an improvement ofmore than 50% compared to the situation before
filtering.

To reach these precision levels, a large amount of images had to be discarded, leaving only 28.1%
of the objects from the original dataset (n = 39,758, excluding ‘‘noise’’ images). The percentage
of objects retained ranged from 8.5% for fibres (n = 557) to a maximum of 63.7% for solitary
radiolarians (n = 8569). As a consequence, on average, filtering decreased recall by 39% and F1 score
by 7.8%.However, the improvement in precision dominated the effect of the decrease in recall, because
classification accuracy of the whole dataset improved from 40.2% to 56.3% after filtering.
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Table 2
Classification metrics before and after filtering out objects with low prediction confidence: number of particles before filtering
(n); percentage of data kept after filtering; precision, recall, and F1 score before and after filtering, and difference (after–before).
Improvements (positive differences) are bolded. Non-living groups are presented first, groups of biological interest second.

Class n %kept Precision Recall F1
Before After Diff Before After Diff Before After Diff

Dark aggregates 60164 6.5 77 95 19 50 7 −43 60 7 −54
Light aggregates 4 209 4.2 8 17 9 53 4 −49 14 4 −10
Fibres 8 055 6.9 46 85 38 56 7 −49 51 7 −44

Copepods 17459 22.4 54 88 34 72 22 −49 62 22 −39
Doliolids 30478 40.2 80 95 16 64 40 −24 71 40 −31
Fish larvae 802 23.2 12 80 67 62 23 −39 21 23 3
Trachymedusae 524 50.6 9 62 53 79 51 −29 16 51 35
Diatom chains 11015 28.6 75 97 22 72 29 −43 73 29 −45
Acantharian radiolarians 1 021 18.9 7 65 58 74 19 −55 14 19 5
Radiolarian colonies 4 367 16.7 24 94 70 62 17 −45 35 17 −18
Solitary radiolarians 13049 65.7 68 88 19 89 66 −23 77 66 −12
Shrimps 213 52.6 51 89 38 74 53 −21 60 53 −7

3.2. Comparison of size spectra in the reference and predicted datasets

In most classes, the size distribution of objects in the automatically predicted dataset and in
the reference dataset was closely related (Fig. 2). However, in three groups (fish larvae, radiolarian
colonies, and shrimps), the shape of the spectrum was conserved but the occurrence of small objects
was under-estimated. In particular, the mode of the spectrum (i.e. the most frequent size class) was
larger by 1.3 mm for fish larvae in the predicted dataset compared to the reference dataset, by 6 mm
for radiolarian colonies and by 2.8 mm for shrimps (Fig. 2).

3.3. Distribution of plankton with respect to the front

The automatically predicted and filtered spatial distributions of most taxa and particles were
significantly correlated with the reference distributions in 20 of the 22 groups at the p < 0.001 level
(Table 3; Fig. 3). Correlation coefficients were also very high (seven classes with r > 0.7, and eight
additional classes with r > 0.5). The only two exceptions are fish larvae and shrimps in the day
transect, both of which were very rare.

At the chosen 99%-precision filtering level, somany images of fish larvae and fibres were discarded
that the resulting spatial distributions were very sparse (14.9% and 8.5% of images left, respectively;
Fig. 4). Such sparse distributions would clearly not be interpreted ecologically, given how little data
are left and how much is discarded. So, information is lost but at least no wrong conclusions would
be drawn. In addition, even in those cases, the locations of the maximum concentration zones were
properly captured in the predicted dataset; there were just too few objects to represent the finer
patterns (Fig. 4).

The reference spatial distributions showed that most taxa were strongly influenced by the frontal
zone: fish larvae, Acantharian radiolarians and doliolids were constrained on the coastal side of the
front, copepods were also more concentrated towards the coast and in the upper layers of the water
column, while diatom chains were more abundant in the deep, offshore zones (Fig. 3, left column).
The high spatial resolution of the data allowed us to detect smaller scale patterns such as a region of
slightly lower concentrations of copepods and solitary radiolarians at the front (around 30 m depth
for copepods and 50 m depth for radiolarians; Fig. 3). Solitary radiolarians also occurred in shallower
water in the offshore zone compared to the coastal zone (Fig. 3) and precisely followed the DCM (not
mapped). All these patterns, from the contrasts between taxa to the fine-scale low concentration
regions at the front, could also be well detected on the predicted data (Fig. 3, right column). The
ecological interpretations in terms of the distribution relative to the frontal zone would be the same.

The relationships between the abundance of biological taxa and various environmental variables
(salinity, temperature, chlorophyll a fluorescence, oxygen concentration) were very similar in the
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Fig. 2. Per-class size spectra in the reference (solid lines) and automatically predicted and filtered (dotted lines) datasets.
Probability density distributions of sizes were scaled between 0 and 1 to focus attention on the shapes of the distribution
rather than the differences in the number of objects between the two datasets. The minimum size of objects considered was
250 pixels in area, resulting in ≥920 µm in major axis.

reference and predicted datasets. In fact, in 69 of the 80 relationships that could be modelled with
GLMs, the slopes were not significantly different between the two datasets. For example, copepods
were more abundant in fresher waters (Fig. 5), which were found on the coastal side of the front.
The relationships with chlorophyll a fluorescence highlighted the association of diatom chains and
solitary radiolarians with the DCM. Finally, doliolids were vastly more abundant in warmer, surface
waters (Fig. 5). All these conclusions would be reached with the predicted dataset, which suggests
that it could be used to explore and define the habitat preference of various organisms.

3.4. Day and night vertical distributions

In 8 of 12 groups, the predicted and reference vertical distributions were slightly but significantly
different (Solow–Kolmogorov–Smirnov test, p < 0.05; Table 4). The four groups in which
the distributions were not statistically different were doliolids, Acantharian radiolarians, colonial
radiolarians and shrimps, although the lack of significant difference in the latter group was probably
due to their low overall numbers.

For many groups, except trachymedusae and fish larvae, ecological conclusions regarding depth
spread and preferendum would be the same in the reference and predicted dataset, even when
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Table 3
Statistical comparisons of spatial distributions between the reference and predicted datasets with three statistics: Dutilleul
modified t-test (statistic, recomputed degrees of freedom and p-value), Pearson’s correlation coefficient and Spearman’s rank
correlation coefficient. NB: no light aggregates were observed at night.

Class Transect Dutilleul t-test Pearson’s r Spearman’s rho
F-stat DoF p-value

Dark aggregates Night 29.99 35 p < 0.001 0.66 0.68
Day 24.11 20 p < 0.001 0.68 0.74

Light aggregates Day 10.05 76 p < 0.01 0.11 0.34
Fibres Night 103.22 155 p < 0.001 0.38 0.62

Day 144.93 191 p < 0.001 0.42 0.62
Copepods Night 54.37 36 p < 0.001 0.74 0.71

Day 36.50 28 p < 0.001 0.73 0.71
Doliolids Night 12244.11 275 p < 0.001 0.66 0.94

Day 27064.77 187 p < 0.001 0.55 0.94
Fish larvae Night 231.25 162 p < 0.001 0.44 0.77

Day 1.58 561 0.21 0.09 0.05
Trachymedusae Night 286.28 168 p < 0.001 0.61 0.78

Day 130.66 287 p < 0.001 0.48 0.55
Diatom chains Night 431.64 74 p < 0.001 0.72 0.92

Day 377.12 97 p < 0.001 0.75 0.86
Acantharian radiolarians Night 130.32 176 p < 0.001 0.53 0.64

Day 107.86 167 p < 0.001 0.47 0.65
Radiolarian colonies Night 220.39 358 p < 0.001 0.61 0.64

Day 116.20 393 p < 0.001 0.52 0.49
Solitary radiolarians Night 107.11 22.24 p < 0.001 0.91 0.89

Day 101.06 14.33 p < 0.001 0.92 0.91
Shrimps Night 685.26 893.08 p < 0.001 0.72 0.82

Day 0.01 719.25 0.91 0.00 0.00

Table 4
Statistical comparisons of vertical distributions between the reference and predicted datasets. The statistic and p-value of the
Solow–Kolmogorov–Smirnov test are reported, as well as the depth centre of mass of the distribution.

Class Transect Solow–K–S
Reference–predicted Depth (m)
K p Reference Predicted

Dark aggregates Day 3.22 <0.0001 49.1 55.3
Night 3.91 <0.0001 41.2 53.1

Light aggregates Day 2.98 <0.0001 29.0 40.5
Fibres Night 3.97 <0.0001 51.5 69.3

Day 1.61 0.0050 61.8 69.7
Copepods Night 2.97 <0.0001 40.8 44.9

Day 1.44 0.0250 56.1 55.1
Doliolids Night 0.67 0.5690 5.1 6.9

Day 0.82 0.3370 7.1 8.6
Fish larvae Night 1.86 <0.0001 16.9 10.9

Day 1.25 0.0490 32.6 52.2
Trachymedusae Night 1.44 0.0080 10.5 12.7

Day 1.31 0.0240 25.9 29.5
Diatom chains Night 3.67 <0.0001 57.5 63.1

Day 1.72 0.0010 64.3 67.8
Acantharian radiolarians Night 1.13 0.1300 25.3 27.1

Day 0.69 0.6070 28.3 29.9
Radiolarian colonies Night 1.20 0.0940 45.4 44.4

Day 0.51 0.9020 45.8 46.3
Radiolarians solitary Night 2.43 <0.0001 53.5 55.9

Day 2.23 <0.0001 59.3 60.9
Shrimps Night 1.00 0.1990 55.3 53.8

Day 0.51 1.0000 49.9 44.1
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Fig. 3. Examples of some spatial distributions in the predicted dataset (right) that are well correlated with the reference
dataset (left). From top to bottom: copepods, doliolids, diatom chains and solitary radiolarians, all during the night transect. The
x-axis is the distance from the coast (coastal side on the left, offshore side on the right). The area of the dots is proportional
to the concentration, scaled to a maximum of 1 per taxon in each dataset, to ease comparison of patterns; the legend shows
five examples but scaling is continuous. Grey lines are the 38.2 and 38.3 isohalines that delineate the frontal region. Ellipses
highlight regions of lower concentration located in the frontal zone.

distributions were statistically different (Table 4, column ‘‘Depth (m)’’ and Fig. 4). Similarly, an
analysis of diel vertical migration patterns would reach very similar conclusions on the reference and
on the predicted dataset. When a significant diel vertical migration was detected in the reference
dataset, it was also significant in the predicted one (Table 5). Conversely, radiolarian colonies and
Acantharian radiolarians do not appear to vertically migrate and this conclusion was also reached
with the predicted dataset. The range of downwardmigration of Trachymedusae, solitary radiolarians
and doliolids was also very comparable between the datasets; the same was true, to a lesser
extent, for calanoid copepods (Table 5, Fig. 6). However, the vertical migration of fish larvae was
poorly predicted, with a bias towards the surface at night that was much greater than in reality
(Fig. 6).
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Fig. 4. Examples of poorly predicted spatial distributions (right) compared to the reference distributions (left). From top to
bottom: fibres at night, then during the day and fish larvae during the day. Same conventions as Fig. 3.

Table 5
Comparison of the resolution of diel vertical migration patterns in the reference and predicted datasets. Reported for each
dataset are: (i) the statistic (K ) of the Solow–Kolmogorov–Smirnov test comparing day and night (bold when the test is
significant), which quantifies the overall difference in distribution, and (ii) the difference between the depth centre of mass
at night and during the day, a proxy for the migration range (night–day; negative means upward migration at night).

Solow–K–S day–night (K ) Migration range (m)
Reference Predicted Reference Predicted

Copepods 4.10 2.86 −15.3 −10.3
Doliolids 1.16 1.14 −2.1 −1.7
Fish larvae 1.88 1.72 −15.8 −41.4
Trachymedusae 1.72 2.07 −15.4 −16.8
Diatom chains 2.53 2.25 −6.8 −4.7
Acantharian radiolarians 0.99 1.15 −3.0 −2.9
Radiolarian colonies 0.50 0.67 −0.4 −1.9
Solitary radiolarians 3.04 2.75 −5.8 −5.0
Shrimps 0.83 0.81 5.4 9.6

4. Discussion

The method presented here aimed at bypassing the manual validation of predicted identifications
by discarding objects classified with low confidence, hence improving precision (but decreasing
recall). The precision increase (+37% on average) was counter-balanced by a recall decrease (−39%
on average), but overall classification accuracy using this method increased by 16%.

The quality and resolution of imagesmay influence themaximum taxonomic resolution achievable
by any automatic classificationmethod. Studies based on high quality laboratory imagery of plankton
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Fig. 5. Examples of the influence of environmental variables on the distribution and concentration of several taxa for the
reference dataset (black) and automatically predicted and filtered dataset (red). The lines are the fitted values of GLMs with a
Poisson distribution of the residuals. The slopes of the GLM based on the predicted dataset are not significantly different from
the ones based on the reference dataset (ANOVA, all p > 0.05). Concentration is standardised between groups based on the
maximum concentration per taxa and per dataset. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 6. Examples of vertical distribution during the day (left side) and at night (right side, shaded) as depicted in the reference
dataset (solid) and in the predicted and filtered dataset (dashed). The significant levels of the comparisons between reference
and predicted distributions are indicated for both day and night (NS: not significant; *: p < 0.05; **: p < 0.01; ***: p < 0.001).
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have usually reached higher accuracy and could resolve a larger number of groups (e.g. 22 phyto-
plankton groups in Sosik and Olson, 2007; 25 zooplankton groups in Fernandes et al., 2009; 10–20
groups in Benfield et al., 2007) than studies based on images of zooplankton captured in situ which
are usually of lesser quality (e.g. three groups with SVM, achieving 80% accuracy (Bi et al., 2015);
seven groups with random subspace model achieving >90% precision but in a self-prediction of the
learning set (Zhao et al., 2010); five to seven groupswithneural networks, reaching 60%–80% accuracy;
Davis et al. (2004) and Hu and Davis (2005)). While only a formal comparison, using the same dataset
(e.g. Fei-Fei et al., 2007), could resolve the differences between classification methods, comparing the
size orders of classification metrics between studies can still be informative. Here, our classifier dealt
with 14 groups and, after filtering, reached 56.3% general accuracy as well as 84% precision on biolog-
ical groups. This falls within the higher range in terms of precision and number of predicted groups
compared to previous studies on in situ images of zooplankton, especially considering that 67%–83%
accuracy is often used as a benchmark for plankton classifications (Culverhouse et al., 2003; Hu and
Davis, 2005). While there is still room for improvement in the original classification rates, the data
filtering method presented in this study markedly improved the performance of the standard ZooPro-
cess/PkID classification.

Large image datasets are likely to become increasingly common thanks to the development of
affordable high-frequency, high-resolution cameras like the one installed on ISIIS. In such big datasets,
all the information may not be essential and some may be efficiently omitted (Bi et al., 2015).
The filtering approach used in this study considerably subsampled the data (72% of objects were
discarded) in order to focus only on well-predicted objects. Despite this high subsampling rate, the
two dimensional, and to a lesser extent vertical, distributions of many classes were not significantly
different between the subsampled and the total, reference dataset. In addition, the poorly predicted
groups could be easily identified by the sparseness of their predicted distribution and/or the high
proportion of discarded images (>90%). This provided an additional control for the validation of
automatically predicted distributions.

More importantly, studying realistic ecological questionswith the reference andpredicted datasets
resulted in the same conclusions.

The size distribution of objects of most classes (9 of 12) was similarly represented in both the
automatically predicted and filtered dataset (Fig. 2). In the three other classes, the filtering method
discarded small objects (<5mm)more often than larger ones, possibly because small objects aremore
prone to be misclassified due to their lower level of detail.

The results also highlighted the foremost influence of the frontal structure, marked by a salinity
gradient, on the distributions of organisms along the across-front section (Fig. 5). This is consistent
with many studies from the literature (Boucher, 1984; Goffart et al., 1995; Pedrotti and Fenaux,
1992). For example, some taxa like Acantharian radiolarians, doliolids, fish larvae, and, to a lesser
extent, copepods were mostly observed in the coastal or frontal zones and in the upper 50 m of the
water column (Figs. 3 and 4). Both datasets allowed us to relate the abundance of various taxa to the
salinity gradient, which marks the frontal region, the intensity of the fluorescence of chlorophyll a
associated with the DCM, or the warmer temperatures found near the surface (Fig. 5). Overall, 86%
of the relationships with environmental variables that were explored were not statistically different
between the two datasets. Finally, diatom chains were most abundant in the deeper layers of the
central zone,where copepod concentrationswere the lowest (Fig. 3), suggesting a possible influence of
grazing. These results suggest that species–environment relationships or interspecific interactions can
be studied at the very fine scales that imaging techniques provide without requiring labour-intensive
validation.

Changes in vertical distributions between day and night, even over less than 10 m, could also
be detected in the predicted data for most taxa, with a power and resolution similar to that of
the reference dataset (Fig. 6; Table 4). Diel vertical migrations of copepods and medusae are well
described in the literature (e.g. Hays, 2003 and Sabatés et al., 2010). However, the apparent <10 m
vertical movements of solitary Colodaria radiolarians or the 2 m downward displacement of doliolids
during the day are not documented in prior studies, possibly because they were missed by other
sampling methods with lower vertical resolutions. The ecological significance of these fine scale
vertical movements is not within the scope of this study, but the fact that they could be detected
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highlights the efficacy of both high frequency imaging systems and this automatic classification and
filtration method in exploring microscale processes in the plankton.

Nonetheless, some taxa share striking similarities and only a trained expert may be able to
differentiate between them. These size and shape resemblances can lead to high error rates in the
automatic prediction of these groups (Fernandes et al., 2009). Automatic classification methods
may never reach the taxonomical resolution achieved by experts observing plankton through a
stereomicroscope (even if both make mistakes; Culverhouse et al., 2003). Still, combined with data
filtering, automatic classification can accurately describe spatial distributions when low taxonomical
resolution is acceptable, for example to study broad groups that provide an environmental or
biological context for a species of interest. Eventually, manual validation is likely to still be required
in order to focus on some specific taxonomic group. For example, fish larvae imaged here were very
diverse and appeared similar to appendicularians and chaetognaths in terms of body size, shape and
opacity. As a result, this group was badly predicted and manual methods would still be necessary to
tease apart their distribution.

Using the proposed method, the processing of 1.5 million objects required only the manual
classification of 5979 objects (0.41%). It could properly describe distribution patterns, but the drastic
filtering process would lead to vastly underestimating the abundances of all groups. In future studies,
these underestimated abundances could be scaled up by quantifying, in each class, the proportion of
discarded andwrongly classified objects (e.g. with a confusionmatrix). This quantification requires to
manually validate a random subset of images of each category of the predicted dataset, thus requiring
additional human effort. However, during validation of the 1.5 million in this project, the throughput
of a trained operator was about 10,000 objects per day. Therefore, human effort on the order of a
couple of weeks would probably yield enough data to correct abundances and further control the
error rate for the rest of the predicted images.

The present method is based on two features shared by all machine learning methods: the use
of a learning set to teach the model how to differentiate between classes and the computation of a
final score, or probability, for each object to belong in each class. The probability thresholds for the
filtering step are computed by cross-validating the learning set and do not require additional manual
sorting. In many cases, Random Forest, working on a few dozen features deterministically measured
on the object, came out as the most efficient classifier for plankton data (e.g. Bell and Hopcroft,
2008; Fernandes et al., 2009 and Gorsky et al., 2010). Yet, overall accuracy was never more than
80%. However, deep machine learning methods such as convolutional neural networks (CNNs) are
emerging as promising tools for a range of image classification tasks (Krizhevsky et al., 2012; Simonyan
and Zisserman, 2015). Applying the filtering method described here to classifiers that already achieve
high accuracy on large datasetsmay eventually lead to near-perfect automatic classifications, without
discarding too much information. Such a combination would allow the handling of large plankton
imaging datasets that are still challenging to process rapidly and accurately (Benfield et al., 2007;
Culverhouse et al., 2006), hence providing appropriate tools to explore the finescale and microscale
processes occurring in the oceans.
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