Suivi de l'arrivée des larves de poissons en phase d'installation en Méditerranée NW

Laboratoire de Villefranche-sur-Mer
Responsable données: Jean-Olivier Irisson

Laboratoire d'Océanographie de Villefranche (LOV)

```
40 professors/researchers + 30 science staff + ~60 PhD, post-docs, fixed-term jobs
```


3 teams

Marine optics and biogeochemistry (remote sensing, floats, gliders, ...)
Biodiversity and biogeochemistry (ocean acidification, toxic algae, microplastics,
...)
Prnnaceac in nolanin anncyctamc (nlanktصn imapery carhnn nımn Tara)

Accueil
Le laboratoire
Activités scientifiques

Contacts $\mid \bigcirc$ Plan du site |Annuaire |Plan d'accès |
 Laboratoire d'Océanographie de Villefranche
 Unité Mixte de Recherche 7093 - CNRS/UPMC
 Bienvenue au Laboratoire d'Océanographie de Villefranche-sur-Mer

 2001, est le fruit de la fusion du Laboratoire d'Océanographie Biologique et Écologie du Plancton Marin (LOBEPM) et de la composante villefranchoise du Laboratoire de Physique et Chimie Marines (LPCM), voir historique. Son mandat actuel (2014-2018) s'effectue cnuc la dnuhle tutelle de l'l Inivercitó Dierre ot Marie Curie (|l|PMC 「 \rightarrow) ot du CentreSCIENCE : Le LOV à I'honneur

Science

Why studying fish larvae? Fish stock fluctuate

RAPPORTS ET PROCÈS-VERBAUX
volume xx

FLUCTUATIONS fisheries of no in the great viewed in the light northern Europe ewed in the llaht of hiological research JOHAN HJORT

What is a fish larva?

What is a fish larva?

Complex life cycle

Connectivity

Sampling settlement-stage fish larvae with light-traps

- Selective gear
- Easy to set and retrieve
- Relatively cheap

c.a. 12 mm

Diplodus puntazzo

c.a. 12 mm
 Sarpa salpa
c.a. 13 nnn
c.a. 10 mm

Chromis chromis

c.a. 12 mm

Atherina hepsetus

Fluctuations in abundance and link with environmental variability

- Strong seasonality
- High abundance : early summer and autumn

Fluctuations in abundance and link with environmental variability

Fluctuations in abundance

- Median CPUE = 0
- Statistical analyses based on quantiles (qANOVA, quantile regressions)

Fluctuations in abundance

- Statistical analyses based on quantiles (qANOVA, quantile regressions)

Fluctuations in abundance

- Statistical analyses based on quantiles (qANOVA, quantile regressions)

Strong seasonality among years

Strong seasonality per species

Strong seasonality per species

Month-scale timing of settlement: before the new moon

Analyses quantiles

- Analyses statistiques basées sur les quantiles (qANOVA, regressions quantiles)

Night-scale timing of settlement: during darkest hours

- Université Pierre et Marie Curie - Paris 6
- Université de Corse
- Université de Perpignan
- ECOCEAN

Sampling effort

- Université Pierre et Marie Curie - Paris 6
- Université de Corse
- Université de Perpignan
- ECOCEAN

Species richness

- Comparison with adults diversity in the Mediterranean
- 40% of families
- 31\% of genera

family	rel. abund. \%	cum. abund. \%
Sparidae	57.86	58
Pomacentridae	15.53	73
Blenniidae	10.04	83
Mullidae	6.42	90
Mugilidae	4.29	94
Atherinidae	1.68	96
Gadidae	1.47	97
Ammodytidae	0.83	98
Scorpaenidae	0.36	98
Congridae	0.27	99

- 30\% species
- and with demersal fishes diversity
- 57% of families
- 39\% of genera
- 33% of species

Species richness

Among year anomalies in the timing of settlement

Among year anomalies in the timing of settlement

Discussion

- Generally consistent with the available literature
- Time of settlement within a 1-2 month window around observed spawning dates in the Mediterranean
- Large patterns comparable to Felix-Hackart et al.
- Strong influence of the moon on settlement
- Comparable with patterns observed in the tropics
- But not lunar-tides related (as no tides here)
- Gregarious behavior?
- Regular sampling required

Discussion

- Provides information on the success of the pelagic phase
- Regular sampling required (1 night / week)
- Easy to set up
- Relatively cheap

Point B time series : Larval Fish Conference 2013

DRIVERS OF TEMPORAL VARIABILITY OF LARVAL FISH ABUNDANCE IN VILLEFRANCHE BAY (NORTHWESTERN MEDITERRANEAN SEA) OVER A 7-YEAR TIME SERIES (2006-2012)

Robin Faillettaz; Jean-Olivier Irisson
UPMC Univ Paris 06, UMR 7093, LOV, Observatoire océanologique, F-06234, Villefranche/mer, France faillettaz@obs-vlfr.fr

Introduction

Understanding the dynamics of larval fish has been of major interest in the past century, but emporal patterns are still difficult to predict. Few studies have tackled larval abundance in the Mediterranean Sea, all of them short term. We extracted a 7 -year time series (2006-2012) with plankton and physical-chemical data from the work of the SO-RADE at point B station in the plankton is sampled daily since 1966.

TEMPORAL PATTERNS

The time series showed strong seasonality, with higher abundances during late spring and early summer (highest captures in June with 8.8 ± 10.7 individuals $100 \mathrm{~m}^{-3}$; Fig. 3). Then, larval fish abundance tended to decrease throughout summer. A second peak was observed in early fall, which may suggest two main spawning periods. Yet, this data did not highlight any temporal pattern of larval size.
In 2008, 2010 and 2012 an early increase of abundance (March or earlier) has been observed and related to environmental parameters.

[^0]

Take Home Message

LARVAL FISH ABUNDANCE OF THIS 7 -YEAR TIME SERIES PRESENTED INTERESTING PATTERNS Strongly seasonal
Inversely correlated to salinity
Correlated to copepods abundance
Doesn't seem to be related to moon phase

- SMALL LARVAE: REPRODUCTION DYNAMICS - LARGER LARVAE: RECRUITMENT DYNAMICS

DATASET

Zooplankton data were obtained from daily samples with Regent net (opening 1 m , mesh $680 \mu \mathrm{~m}$), pooled by week and analyzed using computer-assisted identification (ZooScan; Gorsky et al., 2003). Even though this sampling does not target ichthyoplankton, fish larvae were caught in 185 of the 364 samples (42.6%). Yet, no taxonomical resolution was available.
Data were regularized with a 7-day time step with a constant interpolation. This resulted in a 364 data point time series. (Cha: Chlorophyll a; MLD: Mixed Layer Depth; S: Salinity; T: Temperature; IStrat: Stratification
index) between 2006 and 2012.

Figure 2: Complete time series of monthly averaged lavval fish abundance. Original dates of processed samples are shown as the x-axis. Grey bands correspond to the theoretically favorable spawning period in the Northwestem Mediterranean Sea,

Objectives

EXPLORE A PART OF THE 50-YEAR POINT B TIME
SERIES TO STUDY LARVAL FISH ABUNDANCE

No TAXONOMICAL INFORMATION AVAILABLE NOR ON SMALL TEMPORAL SCALES, BUT...

MORE THAN 40 YEARS OF WEEKLY SAMPLES ARE AVAILABLE THAT WILL BE ADDED TO STUDY LONG TERM ICHTHYOPLANKTON DYNAMICS

[^0]: somest $\begin{aligned} & \text { Data proided } \\ & \text { UPMC, oov: }\end{aligned}$
 B
 Coodr: by Serice Obseration en Mllien LIThoral.SORade, Insu-CNRS-

