DRIVERS OF TEMPORAL VARIABILITY OF LARVAL FISH ABUNDANCE IN VILLEFRANCHE BAY (NORTHWESTERN MEDITERRANEAN SEA) OVER A 7-YEAR TIME SERIES (2006-2012)

Robin Faillettaz; Jean-Olivier Irisson
UPMC Univ Paris 06, UMR 7093, LOV, Observatoire océanologique, F-06234, Villefranche/mer, France faillettaz@obs-vlfr.fr

Objectives

EXPLORE A PART OF THE 50-YEAR POINT B time SERIES TO STUDY LARVAL FISH ABUNDANCE

INTRODUCTION

Understanding the dynamics of larval fish has been of major interest in the past century, but temporal patterns are still difificult to predict. Few studies have tackled larval abundance in the Mediterranean Sea, all of them short term. We extracted a 7 -year time series (2006-2012) with plankton and physical-chemical data from the work of the SO-RADE at point B station in the plankton is sampled daily since 1966.

Figure 3: Monthly averaged larval fish abu
(black) \pm standard deviation (gray area).

TEMPORAL PATTERNS

The time series showed strong seasonality, with higher abundances during late spring and early summer (highest captures in June with 8.8 ± 10.7 individuals $100 \mathrm{~m}^{-3}$; Fig. 3). Then, larval fish abundance tended to decrease throughout summer. A second peak was observed in early fall, which may suggest two main spawning periods. Yet, this data did not highlight any temporal pattern of larval size.
In 2008, 2010 and 2012 an early increase of abundance (March or earlier) has been observed and related to environmental parameters.
 somuth ITPMc, poov.
Q

DATASET

Zooplankton data were obtained from daily samples with Régent net (opening 1 m , mesh $680 \mu \mathrm{~m}$), pooled by week and analyzed using computer-assisted identification (ZooScan; Gorsky et al., 2003). Even though this sampling does not target ichthyoplankton, fish larvae were caught in 185 of the 364 samples (42.6\%). Yet, no taxonomical resolution was available.
Data were regularized with a 7 -day time step with a constant interpolation. This resulted in a 364 data point time series

Figure 2: Complete time series of monthly averaged lavval fish abundarce. Original dates of processed samples are shown as
the x-axis. Grey bands correspond to the theoretically favorable spawning period in the Northwestern Mediteranean Sea,

COMPARISON WITH ENVIRONMENTAL VARIABLES

0206

 that were observed in other variables (areen: earlier, orange: later).

Figure 4: Principal Component Analysis with
laval fish abundance and enviranmental Figure 4. Pincipal Component Analysis wif
laval fis abundance and environmenta lata
CChla: Chlorophyll a; MLD: Mived Layer Depth; (Chla: Chlorophylla; MLD: Mixed Layer Depth;
S: Salinity; T: Temperature: Istrat: Stratification S: Salinity; T: Temperature; Istrat: Stratification
index) between 2006 and 2012.

Figure 6: Larval fishs size distribution between 2006 and 2012. Gray rectangles cor--
respond to summer. Red dots are lavae < 5 mm (potentially pre-flexion) and green responat
dots lavae $>5 m m$ (potentially post-flexion).

Take Home Message

LARVAL FISH ABUNDANCE OF THIS 7-YEAR TIME SERIES PRESENTED INTERESTING PATTERNS Strongly seasonal
Inversely correlated to salinity

- Correlated to copepods abundance

Doesn't seem to be related to moon phase
\Rightarrow SMALL LARVAE: REPRODUCTION DYNAMICS \Rightarrow LARGER LARVAE: RECRUITMENT DYNAMICS

NO TAXONOMICAL INFORMATION AVAILABLE NOR ON SMALL TEMPORAL SCALES, BUT..

MORE THAN 40 YEARS OF WEEKLY SAMPLES ARE AVAILABLE THAT WILL BE ADDED TO STUDY LONG TERM ICHTHYOPLANKTON DYNAMICS

