
Frontiers in Marine Science | www.frontiers

Edited by:
Sophie G. Pitois,

Fisheries and Aquaculture Science
(CEFAS), United Kingdom

Reviewed by:
Dong Sun,

Ministry of Natural Resources, China
Kohei Matsuno,

Hokkaido University,
Japan

*Correspondence:
Laetitia Drago

laetitia.drago@imev-mer.fr
Lars Stemmann

lars.stemmann@imev-mer.fr
Rainer Kiko

rainer.kiko@imev-mer.fr

†These authors share last authorship

Specialty section:
This article was submitted to

Ocean Observation,
a section of the journal

Frontiers in Marine Science

Received: 11 March 2022
Accepted: 05 May 2022

Published: 09 August 2022

Citation:
Drago L, Panaïotis T, Irisson J-O,

Babin M, Biard T, Carlotti F,
Coppola L, Guidi L, Hauss H,

Karp-Boss L, Lombard F,
McDonnell AMP, Picheral M, Rogge A,
Waite AM, Stemmann L and Kiko R

(2022) Global Distribution of
Zooplankton Biomass Estimated by

In Situ Imaging and Machine Learning.
Front. Mar. Sci. 9:894372.

doi: 10.3389/fmars.2022.894372

ORIGINAL RESEARCH
published: 09 August 2022

doi: 10.3389/fmars.2022.894372
Global Distribution of Zooplankton
Biomass Estimated by In Situ
Imaging and Machine Learning
Laetitia Drago1*, Thelma Panaïotis1, Jean-Olivier Irisson1, Marcel Babin2, Tristan Biard3,
François Carlotti 4,5, Laurent Coppola1,6, Lionel Guidi1, Helena Hauss7, Lee Karp-Boss8,
Fabien Lombard1,9, Andrew M. P McDonnell 10, Marc Picheral1, Andreas Rogge11,
Anya M. Waite12, Lars Stemmann1*† and Rainer Kiko1*†
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(CNRS), Département de biologie and Québec-Océan, Université Laval, QC, Canada, 3 Laboratoire d’Océanologie et de
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Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and
provides major ecosystem services as a main driver of the biological carbon pump and in
sustaining fish communities. Zooplankton is also sensitive to its environment and reacts to
its changes. To better understand the importance of zooplankton, and to inform
prognostic models that try to represent them, spatially-resolved biomass estimates of
key plankton taxa are desirable. In this study we predict, for the first time, the global
biomass distribution of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter)
using observations with the Underwater Vision Profiler 5, a quantitative in situ imaging
instrument. After classification of 466,872 organisms from more than 3,549 profiles (0-
500 m) obtained between 2008 and 2019 throughout the globe, we estimated their
individual biovolumes and converted them to biomass using taxa-specific conversion
factors. We then associated these biomass estimates with climatologies of environmental
variables (temperature, salinity, oxygen, etc.), to build habitat models using boosted
regression trees. The results reveal maximal zooplankton biomass values around 60°N
and 55°S as well as minimal values around the oceanic gyres. An increased zooplankton
biomass is also predicted for the equator. Global integrated biomass (0-500 m) was
estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%, mostly in polar
regions), followed by Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical
convergence zone). The machine learning approach used here is sensitive to the size of
the training set and generates reliable predictions for abundant groups such as Copepoda
(R2 ≈ 20-66%) but not for rare ones (Ctenophora, Cnidaria, R2 < 5%). Still, this study
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offers a first protocol to estimate global, spatially resolved zooplankton biomass and
community composition from in situ imaging observations of individual organisms. The
underlying dataset covers a period of 10 years while approaches that rely on net samples
utilized datasets gathered since the 1960s. Increased use of digital imaging approaches
should enable us to obtain zooplankton biomass distribution estimates at basin to global
scales in shorter time frames in the future.
Keywords: global zooplankton, in situ imaging, biomass, machine learning, underwater vision profiler (UVP), spatial
distribution, boosted regression trees (BRT), habitat modeling
1 INTRODUCTION

1.1 Zooplankton
Present in all the oceans of the globe, zooplankton corresponds to
organisms adrift in the water. They represent a great taxonomic
diversity and sizes, ranging from a few micrometers to several
meters (de Vargas et al., 2015; Karsenti et al., 2011; Stemmann and
Boss, 2012). Zooplankton play a central role in the carbon cycle as
they contribute to the biological pump that drives the export of
photosynthetically fixed organic carbon from the surface to the
intermediate and deep oceans (Longhurst and Glen Harrison, 1989;
Turner, 2002; Turner, 2015; Steinberg and Landry, 2017). As a
major link between primary producers and higher trophic levels
(Ikeda, 1985), zooplankton have central ecological and
biogeochemical roles, with associated socio-economic interests.
This socio-economic impact of plankton can be positive, such as
their role as food source for fish (Lehodey et al., 2006; van der
Lingen et al., 2006) or as an indicator of water quality (Suthers et al.,
2019). It can also be negative, as e.g. jellyfish blooms that can impact
various human activities such as aquaculture and fishing
(Richardson et al., 2009).

1.2 Spatial Distribution of Zooplankton and
Its Biomass
Zooplankton organisms are sensitive to environmental conditions
and are thus considered sentinels of ocean changes. Their
distribution is finely governed by the interactions between
physical [i.e., temperature (Steinberg and Landry, 2017),
currents, light (Hays et al., 2005), pressure] and chemical
constraints [nutrients, oxygen (Steinberg and Landry, 2017)],
but also by biological interactions (e.g. predator-prey, symbiosis,
parasitism and commensalism). The dependence of zooplankton
on environmental variables leads to very clear global scale patterns
even at coarse taxonomic levels (Lucas et al., 2014; Biard et al.,
2016). On a global scale, zooplankton diversity is higher at the
equator and decreases towards the poles (Rombouts et al., 2009;
Ibarbalz et al., 2019). Conversely, zooplankton biomass tends to be
low in the tropics and increase with latitude with large seasonal
fluctuations in temperate and polar regions (Ikeda, 1985; Moriarty
et al., 2012; Soviadan et al., 2022). Although a global quantitative
assessment of zooplankton biomass and functional groups is
needed (e.g. to be incorporated in biogeochemical and ecological
models), it is often hampered by the heterogeneity of sampling
methods and the uneven distribution of observations, causing high
in.org 2
uncertainty in biomass estimates (Moriarty et al., 2012; Moriarty
and O’Brien, 2013; Le Quéré et al., 2016).

1.3 The Study of Zooplankton and
Its Difficulties
Assessments of the global distribution of zooplankton organisms
are often based on regional datasets, obtained with heterogeneous
sampling tools traditionally biased towards non-gelatinous taxa
(Lucas et al., 2014), and combined using different standardization
procedures (Moriarty et al., 2012; Moriarty and O’Brien, 2013;
Buitenhuis et al., 2013). Consequently, the global distribution of
only a few zooplankton groups that generally can be well sampled
using plankton nets, e.g. crustaceans, have been well studied
(Rombouts et al., 2009; Buitenhuis et al., 2013). Indeed, some
zooplankton taxa are known to be fragile (cnidarians, ctenophores,
rhizarians, etc.) and their destruction by plankton nets as well as
their poor preservation in fixatives (Beers and Stewart, 1970)
resulted in an underestimation of their biomass and their
ecological role in marine ecosystems (Lucas et al., 2014; Biard
et al., 2016). In this context, non-intrusive in situ methods using
imaging (Remsen et al., 2004; Cowen and Guigand, 2008; Sun et al.,
2008; Stemmann et al., 2008; Schulz et al., 2010; Picheral et al.,
2010; Grossmann et al., 2015) and video (Davis et al., 1992; Davis
et al., 2005; Hoving et al., 2019) instruments have been developed
(Lombard et al., 2019). Among the different systems, only the
Underwater Vision Profiler (UVP) version 4 and 5 have been
widely used for plankton on a global scale which allowed
comparisons of abundance patterns with the Longhurst (1995)
provinces of the ocean (Stemmann et al., 2008; Biard et al., 2016).
Since 2008, the creation and expansion of such a global dataset
could be executed with the UVP5 thanks to numerous participating
teams around the world and the wide commercialization of this in
situ imaging tool. In this study, we used data from the UVP5, an in
situ imaging system designed to detect, measure and quantify the
distribution of zooplankton organisms and marine particles
(Picheral et al., 2010). This instrument, designed for the study of
particle size spectra in the ocean (Stemmann et al., 2002; Guidi
et al., 2009) was also previously used to obtain plankton data at a
high spatial resolution (Forest et al., 2012) and to study fragile
organisms (Biard et al., 2016; Stukel et al., 2018; Christiansen et al.,
2018; Biard and Ohman, 2020). However, even with the
progressive increase in the spatio-temporal density of
observations allowed by the use of imaging instruments, the
unevenness in the distribution of observations remains,
August 2022 | Volume 9 | Article 894372
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preventing large scale biomass estimations. Such global
observations could nevertheless serve as the basis for large scale
estimations through the use of interpolation or extrapolation
methods, including statistical habitat models.

1.4 Statistical Habitat Models
Habitat modeling is a machine learning tool to estimate the
abundance of a taxon at a location where an observation is missing:
instead of interpolating between nearby observation points based on
geographical distance, the environmental conditions (i.e. the habitat)
are used to inform the estimation. Statistically, a regression analysis
can be used to define the relationship between the abundance (or
presence) of a taxon at observation sites and the environmental
variables at those sites (Guisan and Zimmermann, 2000; Elith and
Leathwick, 2009). Then, continuous maps of those environmental
variables can be used to predict continuous maps of the taxon’s
abundance (or presence), by applying the regression.

The objective of this work was the development of a method
to estimate zooplankton biomass on a global scale and to study
the spatial distribution of zooplankton in relation to its habitat.
To obtain such a global view we used global data from the UVP5
in situ imaging system. In most cases, it is difficult to identify the
imaged organisms to species level. We therefore applied the
habitat modeling approach to broader taxonomic groups. We
first estimated the individual biovolume and biomass of
organisms classified in 25 broad taxonomic groups, within a
global in situ imaging dataset. We then applied the habitat model
methodology to each taxonomic group and built models using
different regional and vertical partitions of the data. We
separated data of the epipelagic (0-200 m depth layer) from
the upper mesopelagic (200 to 500 m depth layer). We also used a
global partitioning to separate data from low latitudes (40°S to
40°N) from the remaining high latitude data. We hypothesize
that these partitions should allow us to separate subgroups
Frontiers in Marine Science | www.frontiersin.org 3
within those broad taxa, which occupy different horizontal
and/or vertical habitats. Finally, we used the models’ output to
estimate the global marine zooplankton biomass distribution in
the top 500 m of the water column.

In situ imaging observations with UVP5 have been widely used
during the past decade to study zooplankton in the global ocean.
Biard et al. (2016) used 694 stations from the UVP5 dataset to reveal
that Rhizaria were strongly underestimated in previous studies.
Here, we use an updated version of this dataset, now including 3,549
stations to study the biomass distribution of Copepoda, Rhizaria
and several other groups of planktonic organisms in the 1.02-50
mm size range. We hypothesize that the total biomass of
zooplankton is distributed according to regional production
characteristics, associated with climatic and hydrological patterns,
showing overall a high biomass in high latitudes and lower values in
the subtropical gyres (Ikeda, 1985; Moriarty et al., 2012).
2 MATERIALS AND METHODS

2.1 Plankton Data Collection and
Processing
2.1.1 Global Plankton Imaging With the UVP5
UVP5 data (Figure 1) were compiled from all oceans, covering a 10
year period (2008-2018). A detailed description of the operation of
the UVP5 is given in Picheral et al. (2010). All particles large than ≈
100 mm in Equivalent Spherical Diameter (ESD) weremeasured and
counted, but only images of particles (zooplankton and aggregates)
larger than ≈ 600 mm ESD were kept by the UVP5 for further
processing because smaller objects contained too few pixels to be
identifiable. Acquisition of metadata (geographic location, date, etc.)
and processing of all 8.46 million images (95% being detritus) were
carried out by the ZooProcess software which provided information
on 42 morphological features associated with each object (area,
FIGURE 1 | Map of the UVP5 dataset used in this study. Transparency was used to illustrate the density of points on the map.
August 2022 | Volume 9 | Article 894372
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major andminor axis, etc.). The results were imported into EcoTaxa
(Picheral et al., 2017), an application which allows a taxonomic
classification of images via supervised learning algorithms, followed
by manual validation (Irisson et al., 2022). As 61% of the profiles
have a maximum depth ≤500 m, only images of organisms between
0-500 m were kept and the overall estimates of biomass were
restricted to this depth range. To ensure that profiles were
representative, a filter was also applied to only keep profiles that
covered at least 80% of the layer of interest.

2.1.2 Image Classification and Size Range Covered
Living organisms were separated from detritus (aggregates, fibers,
fecal pellets) as well as artifacts (e.g. bubbles) and classified
according to their taxonomic identity. Recognition and sorting of
organisms can be a source of bias depending on the levels of
perception and experience of the people who perform them. Several
cognitive factors biases such as boredom, fatigue or a classification
biased towards the most used groups have been presented by
Culverhouse (2007) and Culverhouse et al. (2014). To reduce the
risk of poor identification, a shared UVP5 taxonomic guide was
used to homogenize image sorting into 119 taxonomic groups. The
image data were thereafter grouped into 25 broader taxonomic
groups (Table S1), and a subset of the resulting dataset was checked
for homogeneity of sorting within these groups. A minimum of 51
images and a maximum of 10% of all images were extracted from
each group and were independently checked after the assembly of
the final data set. The maximum error or uncertainty rate per taxon
was 9.8% and a vast majority of taxa were under 2.5%. We checked
the classification and if accuracy was <95%, we rechecked the
categories to assure proper sorting. In addition, only fully
validated profiles were used for this analysis. The resulting global
data set consisted of 466,872 images from 3,549 stations. Under-
sampled groups with less than 500 images in the dataset which
could not be used for a global study were not included in
the analysis.

We computed the organisms’ size spectrum to detect the size
range within which the UVP5 can be used to properly quantify their
distribution. The concentration of objects in the ocean is expected to
decrease with size; when this is computed as a normalized size
spectrum, the relationship is expected to be linear (Forest et al.,
2012). A peak in the size spectrum at the lower size range generally
reflects the minimum size of efficient detection by in situ imaging
while high variability in the large size range reflects the poor ability
to detect rare large objects (Stemmann and Boss, 2012).With that in
mind, the spectrum was linear for the size range 1.02-50 mm and
organisms outside this range were not included in the analysis since
large mobile fauna (including large crustaceans) are likely to be
undersampled and small zooplankton organisms close to the
UVP5’s threshold of detection are difficult to identify. This size
range selection ensures that the data used in this study was properly
quantified by the UVP5.

2.1.3 Individual Biomass Estimation
To avoid errors due to incorrect ellipse fits (around appendages
of organisms rather than their body, ellipse fitted to non-
ellipsoidal organisms, etc.), we chose the spheroid method: it is
Frontiers in Marine Science | www.frontiersin.org 4
based on the area (Table 1), which is more consistently measured
by the image analysis performed in ZooProcess.

For Rhizaria, biovolume (mm3) to carbon (mgC) conversions
were done using factors from the literature (Figure S1 and Table
S2). For other groups, the conversion from individual volume to
individual wet weight assumed a density of 1 g cm-3 (Kiørboe,
2013). Then the conversion from individual wet weight to
individual biomass in carbon units (mgC) was calculated using
taxon-specific linear conversion factors from McConville et al.
(2016); when several conversion factors were available for a
taxon, their median was used for each group. To take into
account differences in density of some parts of the organisms,
the Appendicu lar ia group was actua l ly sp l i t in to
Appendicularia_body and Appendicularia_house, whereby the
“body” group contains images with only the animal and the
“house” group contains the house and the animal. For the images
labeled Appendicularia_house, we used the relationship of house
diameter (major axis) to Appendicularia trunk length from
Lombard and Kiørboe (2010). We then converted this body
size equivalent into carbon weight using the corresponding
relationship from Lombard et al. (2009). For the images
labeled Appendicularia_body, we converted the biovolume of
the organism into carbon weight using the corresponding
relationship from Lombard et al. (2009). Two groups also have
been created to separate the Collodaria into solitary Collodaria
and colonial Collodaria. This choice was done based on the fact
that solitary Collodaria are smaller than colonial ones and have a
different vertical distribution (Faillettaz et al., 2016). For solitary
collodarians with a dark central capsule (subgroup of solitary
Collodaria) described in Biard et al. (2016), the estimation of
carbon (0.189 mgC mm-3) by Mansour et al., (2021) was done on
the capsule of the organisms. As Zooprocess measures the area of
the whole organism, we determined the ratio area  whole   organism

area   central   capsule =
0:713 and applied this factor to avoid overestimation of carbon
biomass for this group. For the rest of the collodarians, the
estimation of Mansour et al., (2021) was directly applied.

2.2 Environmental Data Collection
and Processing
In order to develop relationships between regional characteristics
of the environment (Figures S2–4) and observed biomass,
climatologies from the World Ocean Atlas (WOA) (Garcia et al.,
2019) were used for temperature (in °C), salinity, oxygen (converted
from mmol kg-1 to kPa for better physiological interpretation),
and macronutrients (nitrate, phosphate and silicate in mmol kg-1).
We selected the data sets defined on a 1° horizontal grid, over the 0-
500 m depth range, and with a monthly temporal resolution.
TABLE 1 | Methods of calculating individual biovolume with area (mm2); ESD,
the equivalent spherical diameter equivalent (mm); major, the major axis (mm) of
the best fit ellipse; minor, the minor axis (mm) of the most suitable ellipse.

Method Formula

Spheroid 4
3
� p � (

ESD
2

)3 with ESD = 2�
ffiffiffiffiffiffiffiffiffiffiffi
Area
p

r

Ellipsoid 4
3
� p � major

2
� (

minor
2

)2
A
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Temporal coverage was from 2005 to 2017 for salinity and
temperature and 1955 to 2017 for the other variables. We also
usedmonthly averaged surface chlorophyll-a data (Chl a in mgm-3)
resolved to 1/24° from 2005 to 2017 from the Copernicus database
(OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS
_009_082) as well as bathymetry data from NOAA (Amante and
Eakins, 2009) with a spatial resolution of 10 minutes; both were re-
gridded to a 1° grid. Finally, distance to coast was computed by
calculating the distance of all 1°×1° cells to the closest cell associated
to land using the raster package (Hijmans, 2021). To obtain annual
climatologies, when relevant, each monthly variable was averaged
over its time period of coverage.

This environmental data was then matched to the UVP5 data
on the 1°×1° grid. Since the 1°x1° grid used by WOA does not
necessarily follow the contour line of the coast perfectly, some
UVP5 profiles could not be directly matched to the
environmental grids. This is mostly the case where e.g. the
coast is situated in a 45 degree angle to latitude or longitude,
thereby creating triangle shaped areas that are not covered by the
rectangular grid. For profiles that lie in such corners of the grid,
we used the environmental values of the closest neighboring
1°×1° WOA cell. In the epipelagic world model, 3,002 points did
have a direct match while 156 points did not have a direct match.
Frontiers in Marine Science | www.frontiersin.org 5
Out of these 156 points, 14 were not in a neighboring 1°×1°
WOA cell and were removed from the model input. For the
mesopelagic, 2,172 did have a direct match, while 104 points had
a match in a neighboring grid cell and 2 points did not and were
removed from the model input. Maps that show the close vicinity
of non-matching points to adjacent WOA cells are shown in
Supplementary Figure 5.

To assess whether we are able to describe various
environmental conditions with the UVP5 samples, we
compared the distributions of each variable in the worldwide
WOA dataset and in the subset matched to UVP5 profiles
(Figures S6, S7). Although the geographical coverage is not
homogeneous (Figure 1), the coverage of environmental
conditions is good and warrants the use of habitat models.

2.3 Habitat Modeling
The steps of this process are summarized in Figure 2.

2.3.1 Modeling Tools
In this work we used boosted regression trees (BRTs) to predict
the biomass of different zooplankton groups as they show
different advantages over other commonly used machine
FIGURE 2 | Methodology followed from data selection to prediction of global biomass.
August 2022 | Volume 9 | Article 894372
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learning approaches for the nature of our dataset and intended
application (Elith and Graham, 2009). This ensemble method
uses regression trees, models that link a response (here biomass)
to predictors (environmental variables) by successive
dichotomous separations (Breiman et al., 1984; Hastie et al.,
2001). Regression trees automatically select the relevant
explanatory variables, can deal with categorical or continuous
inputs, are not sensitive to the distribution of the continuous
ones, can represent relations of arbitrary form and naturally
include interactions among explanatory variables (Elith et al.,
2006). With so-called surrogate splits, they can also deal with
missing values in the explanatory variables. They are therefore
very convenient to use, but their predictive power is often limited
and they have difficulties to capture smooth relationships.
Boosting is a way to overcome these drawbacks (Schapire,
2003). It is based on the fact that it is easier to find many
rough rules of thumb than to find a single, highly accurate
prediction rule (Schapire, 2003). BRTs combine many short
regression trees in succession, each new tree being adjusted to
consider the observations poorly predicted by the previous ones
(Elith et al., 2006; Leathwick et al., 2006; Elith et al., 2008). This
improves predictive performance and the smoothness of the
prediction (Leathwick et al., 2006). In addition, only a random
subset of the input data is used to fit each tree and this stochastic
component reduces the variance of the final model ensemble
(Friedman, 2002).

Boosted regression trees (BRTs) have an ability to handle a
large number of variables and - other than Generalised Linear
Models (GLMs, Nelder and Wedderburn (1972)) or Generalised
Additive Models (GAMs, Hastie and Tibshirani (1986); De’ath
(2007); Elith et al. (2008)) - do not seek to fit one single model
portraying the relationship of the response variable (here
biomass) and its predictors (environmental variables). Various
recent studies (González Carman et al., 2019; Chen et al., 2020;
Hu et al., 2021) have compared BRTs results to other modeling
tools such as GAMs, GLMs, Random Forests (RFs), Maximum
Entropy modeling (Phillips et al., 2006; Elith and Graham, 2009)
or neural networks and have obtained better predictive
performance with BRTs. Other studies (Zhang et al., 2018; Son
et al., 2018) used complementary GAMs and BRTs to study the
effects of explanatory variables. However, BRTs could be slower
than RFs (Chen et al., 2020) and training parameters need to be
chosen carefully to avoid overfitting (Leathwick et al., 2006; Elith
and Graham, 2009). BRTs were chosen over RFs because of their
capacity to reduce both the bias and the variance of model results
(Hastie et al., 2001). BRTs are also less sensitive to the effect of
extreme outliers and the inclusion of irrelevant predictors
(Leathwick et al., 2006). This makes them suitable for plankton
datasets, as sometimes very high plankton biomass values do
occur during blooms (Brodeur et al., 2018; Pettitt-Wade et al.,
2020). BRTs also have the ability to handle sharp discontinuities
which is not the case of the GAMs (Elith et al., 2008). This is
important when modeling taxa which can have a narrow habitat.

In addition, in regression trees, the loss function, used to
determine which dichotomous split to perform, can be changed
to be adapted to the distribution of residuals. Here we explored
Frontiers in Marine Science | www.frontiersin.org 6
the classic mean squared error, which assumed a somewhat
normal distribution of the residuals, as well as a Tweedie loss
adapted to zero-inflated data (Zhou et al., 2019), and a
Poissonian loss, which considered data as discrete counts, also
including many zeros. To use the Poisson loss, the biomass was
scaled so that the value of the 1% quantile was ≥ 1 and then
rounded to the nearest integer; the inverse scaling was performed
after prediction. This later approach proved to produce the best
fits and more robust models in a few test taxa and all models were
therefore fitted with Poisson loss. The models and statistics were
computed using the xgboost package (Chen et al., 2021) in R
version 4.1.2 (R Core Team, 2021).

2.3.2 Spatial Partitioning of the Data
Individual biomass values derived from UVP5 images and
environmental data measured at various layers were both
averaged over a depth range of interest and matched
geographically, on the 1°×1° grid. Biomass values matched to
the same 1° pixel, and therefore associated to exactly the same
environmental data, were averaged.

We hypothesized that an association between biomass and
environment investigated at a fine scale could be more efficiently
learned by the model because is contains less noise, so we divided
the data vertically between the epipelagic (0-200 m) and
mesopelagic (200-500 m) zones and also tried a finer partition,
into 100 m depth bins between 0 and 500 m. Evaluating separate
models for each layer could allow to focus on finer subgroups
within our quite coarse taxonomic units (some species being
mostly present in one of the layers) and therefore define
biomass-habitat relationships at a finer, more relevant
biological level.

For the same reason, we also built models on subsets of data
partitioned geographically. Indeed, polar copepods have a
different thermal niche compared to tropical ones (Rombouts
et al., 2009; McGinty et al., 2021). So, in addition to a model fitted
on the global dataset (world), we trained models on data from the
region between 40°S and 40°N (low latitude) and from the data
collected outside of this latitudinal band (high latitude). Out of
the 3,549 profiles composing the UVP5 dataset, 2,837 are located
between 40°S and 40°N and 712 were done outside of this
latitudinal band.

2.3.3 Data Splits for Model Training, Assessment
and Evaluation
For each taxon in each spatial partition, the data was split to
distribute 80% of it in a training and validation sets, on which the
model was fitted and assessed, and 20% to a test set, on which
predictive performance was evaluated. This split was stratified
according to the deciles of biomass in the data, to ensure that
both the learning and test sets contained low and high
biomass points.

To choose model hyperparameters (i.e. parameters of the
model adjustment algorithm) and to evaluate the variability in
the prediction due to the constitution of the training set, each
80% portion set was resampled through five-fold cross validation
repeated 20 times [i.e. 100 resamples; (Hastie et al., 2001)]. For
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each cross-validation fold, the model was actually trained on four
folds and validated on the last one. The splits into the five folds
were also stratified according to the deciles of biomass, for the
same reason invoked above.

2.3.4 Selection of Hyperparameters and
Model Evaluation
To extract as much information from the data, while avoiding
overfitting, various combinations of hyperparameters were tested
for each model (Elith et al., 2006). They included: 1) the learning
rate per tree determining the contribution of each tree to the
ensemble model (0.05, 0.08 and 0.1 were tested); 2)
the maximum depth of a tree (2, 4 and 8 were tested); 3) the
minimum number of elements per leaf (which also limits the
depth of the trees; 1, 3 and 5 were used); 4) the number of trees
used for the prediction (values up to 600 were tested). For each
combination, the model was fitted to the training set and
evaluated on the validation set of each of the 100 resamples;
the loss was then averaged over the 100 resamples. The best set of
hyperparameters is usually the one for which this average loss is
minimal. The differences around that minimum are often small
and not always meaningful; to be sure to avoid overfitting, we
applied an early stopping criterion whereby the increase in the
number of trees was stopped when the error did not decrease by
more than 1% after adding 10 trees.

Once the best set of hyperparameters had been chosen, the
relevance of the corresponding model was quantified by the
Pearson correlation between the observed biomass data in
the test set and the predicted biomass, where prediction is the
average of the predictions of the 100 models fitted to the
resamples. This metric captures the model’s ability to correctly
represent general trends and patterns in the data set and is one
way to compute the R2. The significance of this correlation can
also be tested and quantified with a p-value. These metrics can be
readily compared across the various spatial partitions of the data
because they represent the skill of the models on an independent
data set, not the quality of the fit to the training data (like the way
the R2 is usually computed). To compare the worldwide and
regional approaches fairly, it is important to focus on the same
regional subset. To this effect, two additional R2 were computed
for the global model: on the test data located inside the 40°S-40°
N latitudinal band and on those outside of it (world low latitude
and world high latitude).

2.3.5 Effect of Environmental Variables
To identify which environmental variables drive the change of
biomass in each specific model, the percentage of variance
explained by each variable was calculated as the sum of the
effects of the variable at each node of each tree where it was used.
To describe the shape of the effect of each variable, univariate
partial dependence plots were computed as the average ±
standard deviation marginal effect of the variable in the 100
resamples. Practically, the variable of interest was set at a given
value at all training points, the other variables were left at their
original values, the average biomass predicted over all points was
computed, for each resample; then the mean and standard
deviation of those averages were computed across resamples.
Frontiers in Marine Science | www.frontiersin.org 7
Finally, the variable was set to another value and so on. To
describe the full range of each variable, the partial dependence
was estimated at 10% quantile.

2.3.6 Extrapolation to the Globe
To obtain global maps of predicted biomass, the regression
between UVP5 biomass data and environmental variables was
applied to all points in the corresponding partition of the world,
in depth and space. Because 100 models were fitted to the
resamples of the training data, the standard deviation of
biomass among the 100 predictions (sb) can be computed in
addition to the mean (mb), and the coefficient of variation (CV),
defined as CV = sb

mb
, then gives an indication of the uncertainty of

the model predictions.
To get a robust estimate of global zooplankton biomass in the

1.02 mm to 50 mm size range, we chose to be conservative (i.e. ad
minima): only the taxonomic groups in the global partition for
which the correlation between predicted and observed biomass
was significant were used. The surface area of each 1°×1° cell was
computed using the following formula:

A =
P
180

� R2 � sin latSð Þ − sin latNð Þð Þ � 106

with the area A in m2, the south and north latitudinal limits of
the cell in radians and R, the earth radius (6,378.137 km). For
each group used, the biomass was integrated over the relevant
layer in each 1°×1° cell by the following calculation

b̂ t = b̂ � A� l

where b̂ is the estimated biomass in mgC.m-3, A in m2 is defined
above, l is the layer thickness in m and therefore b̂ t is the total
biomass in mgC. Finally, the global ad minima zooplankton
biomass estimate was computed by adding up the biomass for all
selected groups and the 0-200 and 200-500 m depth layer.
3 RESULTS

3.1 Model Comparison
We estimated model performance on the worldwide UVP5
dataset and on a spatial partition of the dataset in low (inside
40°N and 40°S) and high latitudes (outside of the 40°N-40°S
latitudinal band) as well as on different depth layers. We
hypothesized that a finer data selection might enable the
respective model to learn the regional or depth specific habitat
more appropriately. Yet, this also meant fitting models to fewer
data points. In the end, we find that no clear trend emerges from
the relevant comparisons (Figure 3): global models are better in
13 comparisons and partitioned models are better in 14
comparisons, whereas for 11 comparisons no clear decision
can be made. Comparisons can only be made within a given
depth layer between the same regional partitions (e.g. world low
latitude only containing the data predicted by the global model
between 40°N-40°S vs low latitude; world high latitude only
containing data north of 40°N and south of 40°S from the global
model vs high latitude).
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For some groups such as Annelida and some Mollusca, the
high latitude model could not be computed (symbolized by a
grey cell) either because they were considered as rare (< 500
images in the layer modeled) or because the model could not
learn the link between biomass and environment for this group.
However, for other taxa such as Copepoda, solitary Collodaria or
Frontiers in Marine Science | www.frontiersin.org 8
Phaeodaria, high and low latitude models are generally better
than the world model, as indicated by a higher R2 value
(Figure 3). In the epipelagic layer, for Copepoda, the R2 of
world low latitude is 0.26 vs 0.37 in the low latitude model. For
the mesopelagic, low latitude has an R2 of 0.07, lower than the
one for world low latitude (0.62). For Appendicularia in the
FIGURE 3 | Heatmap of the models’ R2 between observed and predicted biomass for all zooplankton groups arranged from the most important in terms of
biomass (Copepoda) to the least important (Limacinidae) in the different depth layers. The regions correspond to: W for world (model run on all data); WL for world
low (data between 40°N and 40°S from the world model); L for low latitude (model run between 40°N and 40°S); WH for world high (data outside of 40N and 40S
from the world model); H for high latitude (model run outside of 40°N and 40°S). The stars indicate significant results (p-value < 0.05) obtained with the Pearson
correlation test.
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epipelagic layer, the best R2 values are obtained in the world low
latitude (0.41) and world high latitude (0.24) models respectively
compared to low latitude (0.01) and high latitude (0.19).

As for the vertical 100 m-bin layers partition, we obtained the
best results overall with the global model. The finer vertical
definition also gives better results for multiple other groups such
as Appendicularia, Phaeodaria and Ostracoda between 0 and 300
m. In most cases, only the top 100 m layer model worked for this
100 m vertical partition. Overall, the most consistently good
choice, when considering all taxa, is a worldwide model fitted
separately to the epipelagic (0-200 m) and mesopelagic (200-500
m) layers. This is therefore the configuration retained for the
total, global biomass estimate. In Figure 3, taxa are arranged in
decreasing order of global biomass in the epipelagic layer. For the
top five taxa [Copepoda (R2 = 0.66), Eumalacostraca (R2 = 0.31),
solitary Collodaria (R2 = 0.10), Appendicularia (R2 = 0.26) and
other Crustacea (R2 = 0.15)], the correlation between true and
predicted biomass is significant (p-value < 0.05) in the epipelagic
worldwide model. In the mesopelagic layer, the correlations for
all five groups are also significant (p-value < 0.05 with respective
R2 of 0.22, 0.10, 0.09, 0.30 and 0.72).

3.2 Group-Wise Contribution to Global
Zooplankton Biomass
Figure 4 shows the biomass per group predicted for the three
spatial partitions and divided into the epi- (0-200 m) and
mesopelagic (200-500 m) layers. For the worldwide model, the
dominant groups in terms of biomass in the epipelagic were
Copepoda (0.083 ± 0.020 PgC), Eumalacostraca (0.058 ± 0.017
PgC) and solitary Collodaria (0.038 ± 0.008 PgC) (Figure 4).
Among the groups displaying a significant correlation (p-value <
0.05) between true and predicted biomass (and therefore
retained for the global estimate), crustaceans (Copepoda,
Eumalacostraca, other Crustacea and Ostracoda) represented
68.4% (0.157 PgC) of the biomass in this layer; Rhizaria
(solitary Collodaria, Foraminifera, Phaeodaria, other Rhizaria
and Acantharea) made up 20.6% (0.047 PgC); but the Cnidaria
(other Cnidaria and other Hydrozoa) represented only 0.56% of
the global zooplankton biomass (0.0013 PgC). In other words,
Crustacea and Rhizaria together made up ~89.1% of the biomass
predicted in the epipelagic layer. In the deeper mesopelagic layer,
Copepoda (0.061 ± 0.016 PgC) were still the dominant group in
terms of biomass, followed by Eumalacostraca (0.049 ± 0.014
PgC) and other Crustaceans (0.017 ± 0.001 PgC) combined.
Crustacea (Copepoda, Eumalacostaca, other Crustacea and
Ostracoda) represented 0.129 PgC, equivalent to 74.4% of this
layer’s biomass, while Rhizaria (Foraminifera, solitary
Collodaria, other Rhizaria and Acantharea) totaled 0.014 PgC,
representing 10.1%, equivalent to most of the remaining biomass
in the layer. When combining the results from these two layers,
Copepoda represented 44.4% of the global integrated biomass,
followed by Eumalacostraca (15.6%), solitary Collodaria (13.1%)
and other Crustacea (11.2%). More broadly, Crustacea
(Copepoda, Eumalacostraca, other Crustacea and Ostracoda)
represented 0.222 PgC or 71.3% of the biomass predicted over
0-500 m, while Rhizaria (Foraminifera, solitary Collodaria, other
Frontiers in Marine Science | www.frontiersin.org 9
Rhizaria and Acantharea) made up 0.019 PgC or 10.8%
of biomass.

Copepoda were particularly dominant in high latitudes,
especially in the epipelagic layer. In the low latitude model,
solitary Collodaria contributed most in the epipelagic, followed by
Eumalacostraca, Copepoda and Foraminifera. Eumalacostraca
dominated biomass in the mesopelagic layer in low latitudes
followed by Copepoda and Foraminifera.

3.3 Spatial Distribution Patterns and
Occupied Habitat
Presenting the global distribution patterns of all zooplankton
groups is beyond the scope of this paper. Instead, we focus on the
results for the three groups contributing most to the total global
biomass (Copepoda, Eumalacostraca and Solitary Collodaria) as
well as on Phaeodaria and Acantharea, Rhizarians that were
shown to be important contributors to zooplankton biomass that
are underestimated by net-based sampling (Biard et al., 2016).
The predicted fields for all modeled groups will be made available
in the GitHub repository linked in the data availability statement
upon publication of the article.

3.3.1 Copepoda
Copepoda is one of the best predicted groups in the epipelagic (R2

= 0.66), likely because it is the most abundant. The structuring
environmental variables were different for the epi- (Figures S8A,
B) and mesopelagic layers (Figures S8C, D): temperature (33%)
and oxygen (19%) for the former and temperature (29%),
bathymetry (19%) and chlorophyll a (15%) for the latter. The
highest copepod biomass in the top 200m was found in high
latitudes (Figure 5A), where water temperature is low and oxygen
concentrations are relatively high. In the mesopelagic layer
(Figure 5B), high copepod biomass was associated with shallow
coastal and cold water masses. The patterns of distribution
predicted by the global models were similar in both layers
(Figures 5A, B), with the highest predicted biomass values in
the Baffin Bay, Labrador Sea and Greenland Sea as well as at the
Southern Ocean polar front region. The lowest predicted biomass
was predicted at oceanic gyres and in the Arctic, north of 80°N.
For both layers, the highest values of the coefficient of variation
(Figure 5C) were found north of Canada and Greenland, as well as
south of 60°S, especially for the epipelagic layer. These high values
depict disagreement among the 100 models fitted to the data
resamples and therefore inform on the uncertainty of the model in
these zones. Caution is therefore advised regarding the
interpretation of the very low values of biomass predicted in
those regions. In the northern hemisphere, except for the Arctic
ocean, the values of the coefficient of variation were rather low at
locations where either low or high biomass values were predicted.
In the southern hemisphere, model predictions varied relatively
strongly at the level of the Antarctic polar front (Figures 5C, D).

3.3.2 Eumalacostraca
Eumalacostraca contains mostly vignettes of euphausiids,
amphipods and decapods. They were predicted globally with
an R2 of 0.31 for the epi- and 0.1 for the mesopelagic layer, both
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with significant p-values (p-value < 0.05; Figure 3). In the
epipelagic, high biomass of these organisms was associated
with high concentrations of phosphate (22%) and low
concentrations of silicate (17%) (Figures S9A, B). In the
Frontiers in Marine Science | www.frontiersin.org 10
mesopelagic layer, the distribution of this group was associated
with low concentrations of silicate (16%), bathymetry (15%) and
high chlorophyll a (15%) (Figures S9C, D). In terms of spatial
distribution, high biomass is predicted in eastern boundary
A B

FIGURE 4 | Barplots showing the mean biomass predicted in PgC at 0-200 m (A) and 200-500 m (B) depth for each group ranked from highest to lowest biomass
in 3 types of models: world, outside 40°N-40°S and inside 40°N-40°S. Error bars correspond to upper interval of the biomass estimation’s standard deviation. The
stars indicate a significant result (p-value < 0.05) obtained with the Pearson correlation test.
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C D

FIGURE 6 | Map of the mean biomass (color scale is log-transformed) of Copepoda as predicted by the model on 0-200 m (A) 200-500 m data (B) as well
as the coefficient of variation for the 0-200 m model (C) and 200-500 m one (D). The color scale for the coefficient of variation has the same range for
Figures 5–9.
A B

C D

FIGURE 5 | Map of the mean biomass (color scale is log-transformed) of Copepoda as predicted by the model on 0-200 m (A) 200-500 m data (B) as well
as the coefficient of variation for the 0-200 m model (C) and 200-500 m one (D). The color scale for the coefficient of variation has the same range for
Figures 5–9.
Frontiers in Marine Science | www.frontiersin.org August 2022 | Volume 9 | Article 89437211

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Drago et al. Global Zooplankton Biomass Distribution
currents, especially in the Peruvian and Californian upwelling
systems. Low biomass is predicted in high latitudes and in the
oceanic gyres, especially in the North Atlantic. Similar patterns
were predicted in the mesopelagic layer, but with lower biomass
values. The model uncertainties are highest in the zones of low
biomass (high latitudes and oceanic gyres).

3.3.3 Solitary Collodaria
Solitary Collodaria were predicted globally with an R2 of 0.1 for the
epi- and 0.09 for the mesopelagic layer, both with significant p-
values (p-value < 0.05; Figure 3). In the epipelagic, the distribution
of solitary Collodaria were mainly associated with low salinity (21%,
between 35 and 37) and bathymetry (14%) (Figures S10A, B). In
the mesopelagic, high abundances of this group were associated
with distance to shore (18%) and high chlorophyll a (17%)(Figures
S10C, D). In this layer, 65% of the biomass was predicted at less
than 1,000 km from the coast. Solitary collodaria were mainly
located between 50°N and 50°S, in a rather diffuse manner
(Figure 7) with maximum biomass predicted at the equator. In
the intertropical region, the highest biomass was found in the
epipelagic zones of productive areas such as the upwelling regions
off the western coast of Africa (Cape Verde and Angola) and of the
eastern boundary of the Pacific Ocean (Peru and California). The
model also predicted high biomass in the Mediterranean Sea.
The importance of the environmental variable “distance to coast”
in the learning process created unusual patterns in the prediction
map such as a hexagonal shape in the Pacific Ocean. North of 50°N
and south of 50°S, environments that are typically characterized by
water masses with low salinity (1st most structuring variable in the
epipelagic) and high nitrate (4th variable), the predicted biomass was
rather low especially in the epipelagic layer.
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3.3.4 Phaeodaria
For this group, the worldwide epipelagic model was statistically
significant (p-value < 0.05; Figure 8) with an R2 of 0.27, but the
mesopelagic model was not (p-value > 0.05; Figure 3). Therefore,
only the 0-200 m layer is displayed (Figure 8). In this layer,
Phaeodaria was one of the best predicted groups (Figure 3)
especially in the upper 200m. The predicted epipelagic
distribution of Phaeodaria is associated with low values of
salinity (38%) followed by bathymetry (11%), surface
chlorophyll a (10%), oxygen and temperature (8% each)
(Figures S11A, B). This is visualised on the map of global
prediction (Figure 8A) on which high biomass was mainly
predicted in the Californian upwelling (characterized by low
salinity, cold and coastal waters), with lower biomass north of the
upwelling up to the Gulf of Alaska. High biomass values were
also predicted in the Bay of Bengal and Adaman Sea. The
coefficient of variation in zones of high biomass is very low,
providing strong confidence in this pattern. The lowest predicted
biomass for this group are found in oceanic gyres and high
latitudes of the northern hemisphere.

3.3.5 Acantharea
The group Acantharea was predicted with low total biomass
(Figure 4). This group was well predicted in the world model
fitted with the epi- (R2 = 0.26) and mesopelagic (R2 = 0.63) layers
(Figure 9). In the epipelagic layer, nitrate (18%), salinity (15%)
and phosphate (12%) were the main driving variables (Figures
S12A, B). In the mesopelagic layer, the link between biomass and
environment (Figure 9B) was defined by the influence of several
variables: silicate (19%), phosphate (12%) followed by
chlorophyll a (12%) (Figures S12C, D). The highest epipelagic
A B

C D

FIGURE 7 | Map of the mean biomass (color scale is log-transformed) of solitary Collodaria as predicted by themodel on 0-200 m (A) 200-500 m data (B) as well
as the coefficient of variation for the 0-200 m model (C) and 200-500 m one (D). The color scale for the coefficient of variation has the same range for Figures 5–9.
August 2022 | Volume 9 | Article 894372

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Drago et al. Global Zooplankton Biomass Distribution
biomass (Figure 9A) was predicted in the intertropical range, in
productive areas such as the upwellings off the West coast of
Africa (Cape Verde, Angola) and America (Peru and
California). These high biomass patches are associated with a
salinity around 35 as the 2nd most structuring variable, as well
as with high nitrate and phosphate concentrations (respectively
1st and 3rd). Intermediate biomass values were predicted mostly
between 50°N and 50°S in a diffuse way, except in the oceanic
gyres where the predicted biomass was lowest. The largest
uncertainty was present in the Southern and Artic Oceans,
Bering Sea and Gulf of Alaska where low biomass values were
predicted (Figure 9C). In the mesopelagic layer, biomass was
predicted to be 16.7-times lower overall (Figure 9B), with
highest values found in the Gulf of Alaska and the Bering
Sea. Intermediate biomass values were predicted for the
upwelling regions and the Southern Ocean. In this layer, the
high biomass estimates correspond with low coefficient of
variation values (Figure 9D).
3.4 In Situ Imaging Compared to Net
Based Sampling
The latitudinal biomass distribution of Copepoda and Rhizaria
obtained by combining the predictions of global models for the
epi- and mesopelagic is shown in Figure 10. It is compared
against data (interpolated on 0-500 m) from the Tara Oceans
mission (Pesant et al., 2015; Soviadan et al., 2022) acquired using
300 mm multinet samples and ZooScan (Gorsky et al., 2010). To
make the comparison meaningful, we only selected organisms in
the ZooScan samples with an ESD >1 mm. For Copepoda, the
values observed by the UVP5 and the nets reveal a similar
latitudinal pattern between 70°N and 60°S. The trend
computed on the output of the models shows lower biomass
between 40°N and 40°S compared to Tara observations. For
Rhizaria, the highest biomass was found in the UVP5
observations and models around the equator. Generally, almost
no Rhizaria were observed in nets whereas they were consistently
observed with the UVP5.
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3.5 Global Zooplankton Biomass
Distribution
The biomass integrated over 0-500 m was predicted to be maximal
at around 60°N and 55°S, with values decreasing both north and
south of these two latitudes (Figure 11). The lowest values of
biomass were predicted north of 80°N and in the Weddell Sea as
well as in the oceanic gyres (especially in the southern hemisphere).
We also observed an increase of the predicted biomass around the
equator. The highest biomass values were predicted between 50 and
80°N, in coastal waters of the Labrador Sea and Baffin Bay, as well as
in the Greenland Sea. Relatively high biomass was predicted around
these locations as well as in the Gulf of Alaska, Bering Sea and Sea
of Okhotsk. A band of high biomass was predicted between 40 and
50°S, a region associated with the Arctic polar front.

Finally, by summing only the predictions that significantly
correlated with observations, we can get to a first robust,
conservative, global biomass estimate of zooplankton biomass
based on UVP5 in situ imaging. As not all groups could be
included in this computation, we refer to the following numbers
as biomass ad minima. With that in mind, the zooplankton biomass
estimated by the models was 0.229 PgC for the epipelagic, and 0.173
PgC for the mesopelagic. Thus, the estimated biomass for the upper
500m of the ocean is to 0.403 PgC.
4 DISCUSSION

4.1 Sensitivity of Model Prediction to
Partitioning
In this study, we explored whether a partitioning approach
would improve model performance through the use of
different horizontal and vertical divisions of our dataset. The
aim of using partitioned models was to test if we could model
local taxa that otherwise would be mixed within the coarse
taxonomic definition imposed by the dataset. The R2

computed on the models’ output show a high variability across
groups, layers and regional combinations. Overall, when
A B

FIGURE 8 | Map of the mean biomass (color scale is log-transformed) of Phaeodaria as predicted by the model on 0-200 m (A), as well as the coefficient of
variation for the 0-200 m model (B). In the map of predicted biomass, 12 cells in the California upwelling presented a value between 3 and 6 mgC m-3 and were
represented here in yellow to observe the distribution of this group on a global scale. The color scale for the coefficient of variation has the same range for
Figures 5–9.
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A B

FIGURE 10 | Comparison of the latitudinal distribution of biomass mgC m-2) integrated over 0-500m depth between our models’ estimation and the results from the
Tara Ocean multinet (300 mm mesh size), for Copepoda (A) and Rhizaria (B). Trends were obtained by using Loess regression on: BRT models (blue line) using the
global model outputs for Copepoda or Rhizaria (summed across 0-200 m and 200-500 m depth); UVP5 data (green line) using the biomass as seen by the UVP5
between 0-500m; TARA Ocean net data (red line) using the sampling points between 0-500m. The Shaded areas represent the 95% confidence interval of the Loess fit.
B

C D

A

FIGURE 9 | Map of the mean biomass (color scale is log-transformed) of Acantharea as predicted by the model on 0-200 m (A), 200-500 m data (B), as well as the
coefficient of variation for the 0-200 m model (C) and 200-500 m one (D). The color scale for the coefficient of variation has the same range for Figures 5–9.
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comparing each partitioned model to the same zone in the global
model, the global and the partitioned models had similar
performance. The reduction in dataset size might be the
explanation why in many cases global models perform better
than the smaller partitioned models. The high latitude dataset
contains 712 UVP5 profiles, the low latitude 2,837 and the world
3,549 data points. Another drawback of the partitioned models
could be that some groups might have an environmental habitat
associated with regions on both sides of the limits of the two
models (here 40°N or 40°S). A vertical resolution that consists of
two layers (0-200 and 200-500m) provided the best results
(Figure 3) compared to a finer depth separation. The
reduction of data per model with a finer depth layer resolution
probably made it impossible for some models to learn the
association between a group’s biomass distribution and the
associated habitat properties, either because the model could
not learn this association or because the group was considered
rare (< 500 images). If enough data are available, however, a finer
vertical model might perform better, because it better delimits
the vertical habitat structure. This seems to be the case for the
Phaeodaria for which models with 100 m resolution obtained
higher R2 results, especially for those between 0 and 300 m depth.

4.2 Group-Wise Contribution to Global
Zooplankton Biomass
Globally, in the 1.02 - 50 mm size range, we observed up to four
zooplankton groups dominating each region and layer
(Figure 4), mainly Crustacea (Copepoda, Eumalacostraca,
other Crustacea) and Rhizaria (solitary Collodaria, Phaeodaria,
Foraminifera). The dominance by copepods was expected: they
are known to be a central trophic link in marine ecosystems
(Steinberg and Landry, 2017) and their dominance was already
shown in several studies (Turner, 2004; Forest et al., 2012; Dai
et al., 2016). Rhizaria were also presented as substantial
participants in the global zooplankton biomass by Biard et al.
Frontiers in Marine Science | www.frontiersin.org 15
(2016) with Phaeodaria and Collodaria being the most important
contributors to rhizarian biomass. In addition, Rhizaria were
previously shown to play an important role in the biological
carbon pump by intercepting (Stukel et al., 2018; Stukel et al.,
2019) but also generating particle flux (Lampitt et al., 2009). In
contrast, gelatinous predators such as Chaetognatha and other
Cnidaria (other Cnidaria, other Hydrozoa, Siphonophorae) can
be well predicted but their predicted biomass is low. This might
be due to different reasons, ranging from their low carbon
content (McConville et al., 2016), their size range which can
exceed the specific range of the UVP5 (1.02 - 50 mm), their lower
abundance reducing the probability of observation in the rather
small volume of the UVP5 and the reduced capacity of the UVP5
to image them due to their transparency. Other instruments,
such as the pelagic in situ observation system (PELAGIOS,
Hoving et al. (2019)), the Zooglider (Ohman, 2019) or the In
Situ Ichthyoplankton Imaging System (ISIIS, Cowen and
Guigand (2008)) might be more adapted to study these
organisms, thanks to their larger sampling volumes or different
image approach.

4.3 Distribution Patterns and Occupied
Habitats
4.3.1 Copepoda
Copepoda biomass was predicted to be highest in high latitudes
in both epi- and mesopelagic layers of the global models. The
lowest values were predicted at the gyres and an increase of
biomass was observed centered at the equator. In the global
models, temperature always appeared within the top three
environmental factors explaining the distribution of copepods
(except for 0-100 m model where it appeared 4th), which is in
agreement with previous work suggesting that surface
temperature and thermal tolerance of marine ectotherms,
including copepods, are important constraints for their
distribution and abundance (Beaugrand et al., 2009; Sunday
FIGURE 11 | Distribution map of the predicted minimum global biomass between 0 and 500m using taxa which obtained a significant result (p-value < 0.05) in
Pearson test between the predicted biomass and the biomass calculated from UVP5 data.
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et al., 2012). We also predict significant Copepoda biomass
centered at 50°S in the Southern Ocean, at the location of the
strongest horizontal gradient of temperature within the
epipelagic layer. This geographic pattern is in agreement with
earlier observations of high Copepoda occurrence along the
Polar front (Pinkerton et al., 2020). Hence, despite a low
number of UVP5 profiles in this latitudinal band, the model is
able to retrieve this fundamental pattern. Higher values of the
coefficient of variation (Figure 5C) are found in the Arctic
Ocean, as well as south of 60°S. More data from these regions
could help to further reduce the uncertainty of our models.

4.3.2 Eumalacostraca
The distribution of the predicted Eumalacostraca biomass
showed high values in coastal areas mainly on the eastern
boundary currents of the Atlantic and Pacific Oceans and low
values at high latitudes and at the locations of the oceanic gyres.
Due to the low image resolution, a finer taxonomic resolution
than Eumalacostraca (mostly euphausiids, decapods and
amphipods) is not possible for UVP5 vignettes. Euphausiids
are well known for their ability to escape standard oceanographic
plankton nets (Brinton, 1967; Wiebe et al., 1982; Sameoto et al.,
1993) and even low noise gliders (Guihen et al. 2022). This
behavior might also be dependent on the species and stage
development while the UVP5 mostly detects small
Eumalacostraca (≤ 50 mm) for which taxonomic identification
is not possible. Nevertheless, as Euphausiids are the second most
abundant crustacean taxon after copepods (Castellanos et al.,
2009), they may compose a large fraction of the biomass in this
group. They are described as widely distributed in high numbers
in the world ocean between 0-300 m with the exception of the
eastern Canadian Arctic and the Arctic Ocean (Castellanos et al.,
2009). This is consistent with our predictions of higher biomass
in the epipelagic zone (0.058 PgC) compared to the mesopelagic
(0.049 PgC), and low values predicted for the Arctic Ocean. The
high Eumalacostraca biomass predicted in the North Atlantic
also consistent with other observations that reported high
abundances of krill in this region (Edwards et al., 2021).
Euphausia superba and Euphausia mucronata have been
respectively described as keystone species of the Antarctic and
the Humboldt Current System (Antezana, 2010). The
comparatively low values of biomass predicted in the Antarctic
in the epipelagic layer (Figure 6A) might be too low, as
Euphausia superba is known to show a patchy distribution
(Siegel, 2005; Siegel, 2016). Since we only have very few
samples from the Antarctic Ocean, we probably under-sampled
this region and specifically krill. The high coefficient of variation
in this region seems to reflect this problem. Overall, our
observations and models likely underestimate the abundances
of Euphausiids and of Eumalacostraca, due to their escape
behaviors, the comparatively small sampling volume of the
system and the low sample size in the Southern Ocean.

4.3.3 Solitary Collodaria
Global models in epi- and mesopelagic layers predicted a
widespread distribution of solitary Collodarians between 50°N
and 50°S, from oligotrophic to eutrophic zones. Their
Frontiers in Marine Science | www.frontiersin.org 16
distribution can be explained by the selective advantage of
their mixotrophy, since all collodarian species live in symbiosis
with photosynthetic microalgae (Suzuki and Not, 2015; Biard
et al., 2016). Consistently with the models’ prediction of solitary
Collodaria as the third most important group in terms of global
biomass in 0-200 m, it has been shown by Biard et al. (2016) that
Collodaria contribute most to the biomass of the Rhizaria
between 0-100 m.

4.3.4 Phaeodaria
The distribution of Phaeodaria shows a latitudinal pattern with
three peaks in biomass, at 50°N (with high biomass values at the
level of the subarctic gyres), at 5°N and at 60°S. These three peaks
were not observed by Biard et al. (2016). The highest values being
predicted in the subarctic gyre are consistent with Steinberg et al.
(2008) who estimated their mean biomass there as 5.5% (range
2.7–13%) of the metazoan biomass sampled using a MOCNESS
(Wiebe et al., 1985). The distribution of this group in the
epipelagic (high biomass in coastal regions especially around
the Californian upwelling and low biomass in the gyres
conditions) could be related to food availability which might
not be abundant enough in the open ocean. In the models’
output, this group only accounted for to ~ 1.2% of the global
biomass in the epipelagic. This is consistent with previous work
describing these organisms as being distributed in water below
150-200 m (Stemmann et al., 2008; Nakamura and Suzuki, 2015;
Boltovskoy et al., 2017; Biard and Ohman, 2020). The high (R2 =
0.50) and low latitude (R2 = 0.39) models for the mesopelagic
layer reveal similar patterns as the ones shown for the epipelagic
layer in Figure 8. This pattern of high biomass predicted in the
North Pacific can be put in perspective with a previous study
(Ikenoue et al., 2019) which highlighted Phaeodaria in the
Western North Pacific as one of the major carriers of carbon
in the twilight zone (200-1000 m (Buesseler and Boyd, 2009)),
with an organic carbon standing stock reaching its highest value
at depths between 200-500 m. A maximum in abundance of
Phaeodaria was observed in the lower epipelagic or mesopelagic
zone in the Sea of Japan by Nakamura et al. (2013) as well as in
the Antarctic beneath the sea ice with similar abundances as the
North Atlantic and Pacific (Morley and Stepien, 1984). In the
regional mesopelagic predictions, the mean biomass in the Sea of
Japan is not particularly high, but it reached higher values in the
Southern Ocean.

4.3.5 Acantharea
Here, we present results on large Acantharea only, but it should
be kept in mind that most species are smaller than 600 mm (Biard
et al., 2016). Most Acantharea species are associated with
symbiotic algae (Michaels, 1991) which could explain the rapid
observed biomass decline with depth. Indeed, the biomass
predicted is 16.7-times lower in the mesopelagic (1.36 10-5

PgC) compared to the epipelagic layer (2.27 10-4 PgC). These
mixotrophs are present throughout the world oceans (Suzuki
and Not, 2015) and commonly distributed in intertropical
latitudes (Bottazzi and Andreoli, 1982) mostly in the surface
with an abundance rapidly declining below 20-50 m depth
(Michaels, 1988). The model confirmed this biomass
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diminution in the epi- and mesopelagic layers (Figure 9). We
also observed latitudinal patterns with the highest biomass in
intertropical areas consistent with these previous studies. The
highest biomass of Acantharea predicted by the mesopelagic
global model in the Gulf of Alaska coincides with a large number
of organisms imaged by the UVP5. This is surprising knowing
the above described distribution patterns. More observations
from this region are required to clarify whether this was a
temporally limited occurrence or whether it represents a region
of permanent abundance maxima. The predicted biomass in
Antarctic waters in this depth layer is also surprising. Acantharea
are marine planktonic unicellular eukaryotes in the Rhizaria
group and produce a mineral skeleton made of strontium sulfate
(Michaels, 1991; Decelle and Not, 2015). The surprisingly high
abundance at high latitudes might be important for studies done
on the strontium biogeochemical cycle (Bernstein et al., 1987;
Decelle et al., 2013).

4.4 Comparison Between Net Sampling
and In Situ Imaging
The integrated global predicted biomass is dominated by
Copepoda (35.7%), Eumalacostraca (26.6%) and Rhizaria
(16.4%). Because of their important contribution to the
predicted global biomass, the distribution map of total biomass
ad minima (Figure 11) reflects in part the major distribution
patterns of these three groups: polar waters are dominated by
Copepoda and intertropical waters are dominated by
mixotrophic Rhizaria. Eumalacostraca follows the predicted
distribution of zooplankton with 3 peaks of biomass at 60°N
(55°N for zooplankton), at the equator and at 45°S (55°S for
zooplankton). The comparison of the models’ output with data
from the Tara Ocean expedition, obtained with a 300 mm mesh
size multinet (Pesant et al., 2015; Soviadan et al., 2022) shows a
good agreement for the latitudinal patterns of Copepod biomass.
Net data is estimated to be higher than biomass estimated from
UVP5 data in the intertropical latitude range for this group.
Results in the high latitudes regions with strong seasonality and
sea ice cover should be taken with caution as no data was
available in the UVP5 dataset in winter for these latitudes. For
Rhizaria, we observe that at most locations the biomass estimated
by the nets is zero, while the UVP5 images suggest a considerable
biomass in this group (Figure 10). In the TARA Ocean multinet
samples, only Acantharea, Foraminifera and Phaeodaria are
sometimes detected, while Collodaria are consistently absent
from these samples. Indeed, Collodaria and Acantharea are
Frontiers in Marine Science | www.frontiersin.org 17
poorly sampled by nets and are not well preserved in plankton
samples fixed with regular fixatives such as formaldehyde
(Suzuki and Not, 2015). Yet, solitary Collodaria are predicted
as the 3rd most important group in terms of biomass in the upper
200 m of the global model. Our results show that in situ imaging
is far more suitable for the study of this group and all other
fragile plankton groups. As described above, several important
zooplankton groups are generally well modeled, allowing us to
combine the taxon-specific models to yield a global estimate of
zooplankton biomass in the 1.02 to 50 mm size range. Previous
studies (Table 2) have computed such global zooplankton
biomass obtained largely (Hatton et al., 2021) or completely
(Moriarty et al., 2012; Moriarty and O’Brien, 2013; Buitenhuis
et al., 2013) from net collected organisms. These studies also used
a proportionality method for estimating the global biomass
presented in Table 2 by multiplying the median value of
biomass with the surface of the ocean and the studied depth.
Our predictions are within the same order of magnitude — but at
the lower limit— of these compilations if one combines theirmeso-
andmacrozooplankton biomass estimates.We refrain from amore
detailed comparisondue to the difference in size studied (here 1.02 -
50 mm ESD — equivalent to 765 mm to 37.5 mm meshsize
according to Nichols and Thompson (1991)’s 3/4 law of mesh
selection — compared to ≥ 200 mm for the cited meso- and
macrozooplankton studies), sampling methods and depth
covered (Buitenhuis et al., 2013). Contrary to the complementary
use of nets and Zooscan, such as with the TARA dataset, these
previous studies arebasedondataobtained throughmethodswhich
do not allow to split the organisms based on fixed criteria (size, area
of the organism or taxonomy). One would expect a large
contribution to biomass in the 200 to 765 mm mesh size range
(Gallienne, 2001; Hwang et al., 2007).

4.5 Global Zooplankton Biomass
Distribution
The distribution of the global integrated biomass (0-500 m) ad
minima follows the patterns described by Ikeda (1985), Moriarty
et al. (2012) and Hatton et al. (2021) which correspond to a
latitudinal distribution of the biomass with high values north of
55°N and south of 55°S. Relatively higher values of biomass are
predicted around the equator (15°N-15°S). The benefit of our
work and of compiled datasets such as the ones used in Moriarty
et al. (2012); Moriarty and O’Brien (2013), Buitenhuis et al.
(2013) and Hatton et al. (2021) is that they bring together
numerous single transects and allow to have an integrated view
TABLE 2 | Comparison of global biomass estimates in the literature.

Study Size range (mesh size) Depth Global estimates (PgC)

Moriarty et al., 2012 ≥2 mm 0-350 m 0.02
Moriarty and O’Brien, 2013 ≥200 mm 0-200 0.19
Buitenhuis et al., 2013 ≥200 mm Integrated 0.33-0.59
Buitenhuis et al., 2013 ≥2 mm 0-500 m 0.22-1.52
Hatton et al., 2021 ≥200 mm 0-200 m 0.53-31.57
Hatton et al., 2021 ≥2 mm 0-200 m 0.02-2.64
This study ≥765 mm - 37.5 mm 0-200 m 0.229
August 2022 | V
Please note that we have converted the size range we cover with the UVP5 (1.02-50 mm ESD) to meshsize using the empirical Nichols and Thompson (1991)’s 3/4 law of mesh selection.
olume 9 | Article 894372

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Drago et al. Global Zooplankton Biomass Distribution
of global zooplankton distribution. The results depicted in
Figure 11 in the Southern Ocean are consistent with a recent
study done with BRTs (Pinkerton et al., 2020) showing that the
highest environmental suitability for zooplankton was located
between the Subantarctic Front and the southern limit of the
Antarctic Circumpolar Current with a lower suitability north
and south of this band. The spatial distribution of plankton
biomass thus shows the importance of oceanographic
hydrodynamics leading to oligotrophy in central gyres and
mesotrophy in areas of high latitudes and equatorial and
coastal upwellings. Zooplankton plays a crucial role in fisheries
e.g. in the Humboldt Current System which harbors the largest
fishery in the world and most economically important fish
species, supported by the upwelling of Peru (Chavez et al.,
2008). Peruvian anchovies and sardines obtain most of their
energy from zooplankton (van der Lingen et al., 2009).

4.6 Conclusions and Outlook
In summary, our results show, for the first time, that spatial
patterns and global biomass of key zooplankton groups can be
calculated using a machine learning method (BRT) to extrapolate
individual zooplankton biomass estimates from sparse UVP5
observation. They also highlight the important contribution of
Rhizaria (predicted mainly in the intertropical range) and
Copepoda (predicted mainly in high latitudes) to the global
estimate of zooplankton biomass. Within the size range covered,
Copepoda contributes 35.7%, Eumalacostraca 26.6% and
Rhizaria 16.4% to global zooplankton biomass. This suggests
that it is especially crucial to extend work on the fragile Rhizaria,
which are comparatively little studied. As a biogeographical
study, our aim was not to represent proximal mechanisms that
drive the distribution of zooplankton, or to describe seasonal or
transient (e.g. mesoscale) features, but rather to represent the
global distribution patterns of biomass according to general
properties of the water masses. This method worked well in
general as seen in Figure 3 for at least 3 of the combinations of
regions and depths. It made it possible to model 19 groups of
zooplankton and obtain corresponding maps with the relative
importance of the environmental variables used for the model.
The WOA climatologies used in this study compile data of
salinity and temperature (2005-2017) and other variables
(1955-2017). The temporal coverage of the latter being much
coarser, we hope to use more constrained nutrient datasets in our
future work as they become available.

The zooplankton biomass predictions based on UVP5 datasets
presentedhere are important for globalbiogeochemicalmodelingof
pelagic ecosystems because they usually lack zooplankton
observations to constrain their development (Stemmann and
Boss, 2012; Buitenhuis et al., 2013; Séférian et al., 2020). A current
trend is to add a more realistic representation of plankton in
ecosystem models to better predict future ecosystem states and
ocean conditions and to inform sustainable management strategies
for climate mitigation at global scale (Séférian et al., 2020). The
UVP5, the newly developed UVP6 (Picheral et al., 2021) and other
commercialized in situ systems, provided that they are inter-
calibrated (Lombard et al., 2019), will continue to be used in the
foreseeable future, increasing data availability. Still, the bottleneck
Frontiers in Marine Science | www.frontiersin.org 18
lies in the classification of the massive amount of images which still
require human validation, but new algorithms to recognise
plankton types and traits are expected (Irisson et al., 2022). The
further anticipated expansion of image datasets will enable the
quantitative assessment of rare groups that were not well predicted
here. In addition, the deployment of the UVP6 on autonomous
platforms will also help to sample certain areas that are difficult to
access at certain times of the year such as polar regions in winter.
The large dataset used in this study spans 10 years of data collection
and can be compared to the COPEPOD database collected since
about 1960. The possibilities given by imaging systems could hence
help to reach a useful amount of data in amuch smaller time frame.
It would be interesting to use other imaging system’s data sets such
as the ones presented by Lombard et al. (2019) to reconstruct the
wider size spectrum of these groups in terms of biomass. To have a
better understanding of the vertical habitat of zooplanktonic
groups, we highly recommend that UVP5 and 6 profiles should
bedone toat least 1,000mwhen thebathymetryallows it. Long term
inter annual data acquisition is also highly recommended. This will
enable us to monitor global zooplankton biomass changes at pace
with the speed of global change.
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Distribution of Known Macrozooplankton Abundance and Biomass in the
Global Ocean. Earth Syst. Sci. Data Discuss. 5, 187–220. doi: 10.5194/essdd-5-
187-2012

Moriarty, R., and O’Brien, T. D. (2013). Distribution of Mesozooplankton Biomass
in the Global Ocean. Earth Syst. Sci. Data 5, 45–55. doi: 10.5194/essd-5-45-
2013

Morley, J., and Stepien, J. (1984). Siliceous Microfauna in Waters Beneath
Antarctic Sea Ice. Mar. Ecol. Prog. Ser. 19, 207–210. doi: 10.3354/meps019207

Nakamura, Y., Imai, I., Yamaguchi, A., Tuji, A., and Suzuki, N. (2013).
Aulographis Japonica Sp. Nov. (Phaeodaria, Aulacanthida, Aulacanthidae),
an Abundant Zooplankton in the Deep Sea of the Sea of Japan. Plankt. Bentho.
Res. 8, 107–115. doi: 10.3800/pbr.8.107

Nakamura, Y., and Suzuki, N. (2015). “Phaeodaria: Diverse Marine Cercozoans of
World-Wide Distribution,” in Marine Protists. Eds. S. Ohtsuka, T. Suzaki, T.
Horiguchi, N. Suzuki and F. Not (Tokyo: Springer Japan), 223–249.
doi: 10.1007/978-4-431-55130-0_9

Nelder, J. A., and Wedderburn, R. W. M. (1972). Journal of the Royal Statistical
Society. Series A (General) 135(3):370–384 (15 pages) doi: 10.2307/2344614

Nichols, J., and Thompson, A. (1991). Mesh Selection of Copepodite and Nauplius
Stages of Four Calanoid Copepod Species. J. Plankt. Res. 13, 661–671.
doi: 10.1093/plankt/13.3.661

Ohman, M. D. (2019). A Sea of Tentacles: Optically Discernible Traits Resolved
From Planktonic Organisms in Situ. ICES. J. Mar. Sci. 76, 1959–1972.
doi: 10.1093/icesjms/fsz184

Pesant, S., Not, F., Picheral, M., Kandels-Lewis, S., Le Bescot, N., Gorsky, G., et al.
(2015). Open Science Resources for the Discovery and Analysis of Tara Oceans
Data. Sci. Data 2, 150023. doi: 10.1038/sdata.2015.23

Pettitt-Wade, H., Pearce, T., Kuptana, D., Gallagher, C. P., Scharffenberg, K., Lea,
E. V., et al. (2020). Inuit Observations of a Tunicata Bloom Unusual for the
Amundsen Gulf, Western Canadian Arctic. Arct. Sci. 6, 340–351. doi: 10.1139/
as-2020-0018

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum Entropy
Modeling of Species Geographic Distributions. Ecol. Model. 190, 231–259.
doi: 10.1016/j.ecolmodel.2005.03.026

Picheral, M., Catalano, C., Brousseau, D., Claustre, H., Coppola, L., Leymarie, E.,
et al. (2021). The Underwater Vision Profiler 6: An Imaging Sensor of
Particle Size Spectra and Plankton, for Autonomous and Cabled Platforms.
Limnol. Oceanogr.: Methods 20, 115–129. doi: 10.1002/lom3.10475.
lom3.10475.

Picheral, M., Colin, S., and Irisson, J.-O. (2017). EcoTaxa, a Tool for the
Taxonomic Classification of Images.

Picheral, M., Guidi, L., Stemmann, L., Karl, D. M., Iddaoud, G., and Gorsky, G.
(2010). The Underwater Vision Profiler 5: An Advanced Instrument for High
Spatial Resolution Studies of Particle Size Spectra and Zooplankton:
Underwater Vision Profiler. Limnol. Oceanogr.: Methods 8, 462–473.
doi: 10.4319/lom.2010.8.462

Pinkerton, M. H., Décima, M., Kitchener, J. A., Takahashi, K. T., Robinson, K. V.,
Stewart, R., et al. (2020). Zooplankton in the Southern Ocean From the
Continuous Plankton Recorder: Distributions and Long-Term Change. Deep.
Frontiers in Marine Science | www.frontiersin.org 21
Sea. Res. Part I.: Oceanogr. Res. Pap. 162, 103303. doi: 10.1016/
j.dsr.2020.103303

R Core Team (2021). R: A Language and Environment for Statistical Computing
(Vienna, Austria: R Foundation for Statistical Computing).

Remsen, A., Hopkins, T. L., and Samson, S. (2004). What You See is Not What
You Catch: A Comparison of Concurrently Collected Net, Optical Plankton
Counter, and Shadowed Image Particle Profiling Evaluation Recorder Data
From the Northeast Gulf of Mexico. Deep. Sea. Res. Part I.: Oceanogr. Res. Pap.
51, 129–151. doi: 10.1016/j.dsr.2003.09.008

Richardson, A. J., Bakun, A., Hays, G. C., and Gibbons, M. J. (2009). The Jellyfish
Joyride: Causes, Consequences and Management Responses to a More
Gelatinous Future. Trends Ecol. Evol. 24, 312–322. doi: 10.1016/
j.tree.2009.01.010
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