

Laetitia Drago PhD Student

T Panaïotis, JO Irisson, M Babin, T Biard, F Carlotti, L Coppola, L Guidi, H Hauss, L Karp-Boss, F Lombard, A McDonnell, M Picheral, A Rogge, A Waite, R Kiko, L Stemmann

> Institut de la Mer de Villefranche sur mer, France COMPLEx (computational plankton ecology) team

Ecologic role of plankton

Laetitia Drago

Introduction

Material and methods

Results and discussion

Conclusion and perspectives

Estimation of plankton biomass

Mesh size = 200µm

Sampling

Mesh size = 333µm

Heterogeneity of methods

• **Sampling** : season, location, depth, tools

Introduction

Conclusion and perspectives

Estimation of plankton biomass

Heterogeneity of methods

- **Sampling** : season, location, depth, tools
- Measurements : settling volume, wet weight, etc.
- Mainly nets : bias towards non gelatinous taxa (Lucas et al., 2014)

Mesh size = 200µm

Sampling

(Moriarty et al., 2013)

Mesh size = 333µm

Measurements

Wet weight

OBJECTIVES

- Estimate the geographic distribution of large groups of plankton
- Estimate global plankton biomass

OBJECTIVES

- Estimate the geographic distribution of large groups of plankton
- Estimate global plankton biomass

HYPOTHESIS

The distribution of organisms and their biomass depends on environmental factors

OBJECTIVES

- Estimate the geographic distribution of large groups of plankton
- Estimate global plankton biomass

HYPOTHESIS

The distribution of organisms and their biomass depends on environmental factors

APPROCHE

Individual biomass of plankton by in situ imaging

Habitat models

Material and methods

Results and discussion

Data acquisition

Distribution of profiles Underwater Vision Profiler 5 (≈ 2700 vertical profiles)

Trichodesmium

2mm

Pyrosoma

(Picheral et al., 2010)

Plankton size spectrum adapted from Lombard et al., 2019

Introduction	Material and methods		Results and discussion	Conclusion and perspectives	
	Biovolume	Biomass	Models		

Introduction	Material and methods		Results and discussion	Conclusion and perspectives	
	Biovolume	Biomass	Models		

Taxonomic identification

Selection size 1-50mm

Introduction	Material and methods			Results and discussion	Conclusion and perspectives
	Biovolume	Biomass	Models		

area = n pixels

Introduction	Material and methods		Results and discussion	Conclusion and perspectives	
	Biovolume	Biomass	Models		

Introduction	Material and methods		Results and discussion	Conclusion and perspectives	
	Biovolume	Biomass	Models		

Use of median

Introduction	Material and methods		Results and discussion	Conclusion and perspectives	
	Biovolume	Biomass	Models		

Biomass of epipelagic copepods (mgC.m⁻³) in each UVP5 station

Biomass of epipelagic copepods (mgC.m⁻³) in each UVP5 station

Temperature

Introduction	Ma	Results and		
	Biovolume	Biomass	Models	

3. Habitat models in epi and mesopelagic : multivariate approach

Salinity

50 -

-0 **lat**

-100 0 100 Ion Epipelagic climat

Environmental conditions coverage

Source

Laetitia Drago $\langle 10 \rangle$

Environmental conditions coverage

Source

UVP5 stations Global distribution

Good coverage of the environmental space

11

Laetitia Drago

Biomass distribution of organisms: Copepoda Maps of predicted distribution 2mm Mesopelagic Epipelagic $R^2 = 35\%$ Predicted biomass (mgC.m⁻³) 15 10 5 (29±1%) (12±2%) (18±1%) (40±1%) (19±2%) (13±2%) Predicted biomass Predicted biomass in mgC.m⁻³ in mgC.m⁻³ 0-11 10 200 300 Surface chlorophylle Temperature(°C) vcno (9±1% Temperature(°C) Nitrate (µmol.kg⁻¹) Pycnocline (m) *a* (mg.m⁻³)

Biomass distribution of organisms: Copepoda

Biomass distribution of organisms: Rhizaria

Biomass distribution of organisms: Rhizaria

Results and discussion

Conclusion and perspectives

2mm

Biomass distribution of organisms: Rhizaria

Predicted biomass (0-500m)

Biomass distribution of organisms: Rhizaria

10 5

Conclusion and perspectives

Predicted biomass (0-500m)

		1 st and 2 nd driving variables				
ed	Taxonomic group	Epipelagic	Mesopelagic			
55 1 ⁻³)	Acantharea	Nitrate, Salinity	Nitrate, Oxygen			
. ,	Collodaria non colonial	Pycnocline, Oxygen	Phosphate, Pycnocline			
	Foraminifera		Chla, Silicate			
	Phaeodaria	Salinity, Temperature	Silicate, Oxygen			
	Rhizaria_others	Nitrate, Temperature	Salinity, Pycnocline			

Pourcentage de la biomasse totale

Estimation of global biomass

Total biomass (0-500m)

Plankton processes

- Better understanding of association with water masses
- Copepods: temperature
- Rhizaria: diverse

Plankton processes

- Better understanding of ٠ association with water masses
- Copepods: temperature ٠
- Rhizaria: diverse .

Global biomass distribution

- Copepods dominate at high latitude •
- Rhizarians most abundant in ٠ intertropics and upwelling regions

50 40

30

Plankton processes

- Better understanding of association with water masses
- Copepods: temperature
- Rhizaria: diverse

Global biomass distribution

- Copepods dominate at high latitude
- Rhizarians most abundant in intertropics and upwelling regions

• Perspectives

- Global or regional scales
- Seasonality
- Digital ocean

Predicted biomass (mgC.m⁻³)

Image: Hydroptics

Thank you for your attention !

Any questions ?

Contact me at laetitia.drago@imev-mer.com

