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Abstract. We show in this paper how numerical bifurcation analysis can be used to study
the evolution of genetically transmitted phenotypic traits. For this, we consider the standard
Rosenzweig–MacArthur prey-predator model [The American Naturalist, 97 (1963), pp. 209–223]
and, following the so-called adaptive dynamics approach, we derive from it a second-order evolu-
tionary model composed of two ODEs, one for the prey trait and one for the predator trait. Then,
we perform a detailed bifurcation analysis of the evolutionary model with respect to various envi-
ronmental and demographic parameters. Surprisingly, the evolutionary dynamics turn out to be
much richer than the population dynamics. Up to three evolutionary attractors can be present, and
the bifurcation diagrams contain numerous global bifurcations and codimension-2 bifurcation points.
Interesting biological properties can be extracted from these bifurcation diagrams. In particular, one
can conclude that evolution of the traits can be cyclic and easily promote prey species diversity.
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Introduction. One of the most important notions in biology, namely evolution,
is now recognized to be of primary importance in many fields of science. Evolution of
markets, institutions, technologies, languages, and social rules are relevant examples.
Thus, a well-founded mathematical theory of evolution is now needed more than ever.

Evolving systems are in general composed of N homogeneous subsystems identi-
fied by two features: dimension ni and characteristic trait xi. For example, in ecology,
the subsystems are interacting plant and animal populations, ni is the number of in-
dividuals of each population or, equivalently, the density of the population, and xi is a
genetically transmitted phenotypic trait (e.g., body size). Both features vary in time,
but densities can vary at much faster rates than traits. This means that an evolving
system has two distinct timescales: one is fast and concerns only the densities, which
vary while traits remain practically constant, and the other concerns the slow varia-
tion of the traits entraining slow variations of the densities. In some favorable cases,
these slow variations of the traits can be described by a standard ODE model (called
the evolutionary model).

The theoretical work developed so far has shown that evolutionary dynamics can
be extremely complex. For example, cyclic regimes [7] (called Red Queen dynamics,
as in [27]) and chaotic regimes [3] are possible, as well as evolutionary suicides and
murders, which occur when the variation of the trait of a population entails the
extinction of the same or another population [20, 10]. Moreover, an evolving system
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can also have alternative evolutionary attractors, in which case the fate of the system
is determined by its ancestral conditions.

Once an evolutionary model is available, the powerful machinery of numerical
bifurcation analysis can be applied to it. This is mandatory if the aim is to detect
the impact of some strategic parameters on the evolution of the system. Systematic
bifurcation analysis with respect to key environmental parameters could, for example,
explain why ecosystems differ at various latitudes, altitudes, and depths. The few
bifurcation studies performed to date on evolutionary models (see, for example, [19,
21, 7]) are far from satisfactory: they are inaccurate because they have been mainly
carried out through simulation, and they are incomplete because they refer to non-
generic cases or point out only some aspects of the full bifurcation diagram. In this
article we therefore present an accurate and detailed bifurcation analysis of a typical
evolutionary model. The problem we tackle is the coevolution of prey and predator
traits, a subject that has received a great deal of attention in the last decade (see
[1] for a review). We consider two populations (prey and predator) and two traits
(one for each population), and the bifurcation analysis of the evolutionary model is
performed with respect to pairs of parameters. The results we obtain are of rather
limited biological value because they refer to a specific prey-predator coevolution
model. However, the methodology is very general and could be applied to other models
in order to obtain, through a suitable comparative analysis, general conclusions on
the coevolution of prey-predator communities.

The paper is organized as follows. In the next section we recall how, under
suitable assumptions on the mutation and selection processes, a canonical evolutionary
model can be derived from a general population model [6, 5]. Then, we focus on
the well known Rosenzweig–MacArthur prey-predator model [26], showing how the
canonical evolutionary model can be explicitly derived from it. Finally, we present
the bifurcation analysis of the evolutionary model and demonstrate how interesting
biological conclusions can be extracted from it. Some comments and comparisons
with the literature close the paper.

The canonical equation of monomorphic evolutionary dynamics. Con-
sider two interacting populations, hereafter called prey and predator populations, with
densities n1 and n2 and phenotypic traits x1 and x2.

At ecological timescale (fast dynamics), the traits are constant while the densities
vary according to two ODEs of the form

ṅ1 = n1F1(n1, n2, x1, x2),
ṅ2 = n2F2(n1, n2, x1, x2),

(1)

where Fi is the net per capita growth rate of the ith population. In the following,
model (1), called the resident model, is assumed to have one strictly positive and
globally stable equilibrium n̄(x1, x2) for each (x1, x2) belonging to a set of the trait
space called the stationary coexistence region. This condition is not strictly necessary,
but it simplifies the discussion.

At evolutionary timescale (slow dynamics), the traits vary according to two ODEs
called the evolutionary model:

ẋ1 = k1G1(x1, x2),
ẋ2 = k2G2(x1, x2),

(2)

where k1 and k2 are suitable constant parameters determined by size and frequency
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of mutations. However, population densities vary slowly with the traits because, at
evolutionary timescale, model (1) is always at the equilibrium n̄(x1, x2).

Some authors discuss evolutionary problems by assigning particular forms to the
functions G1 and G2 in model (2) without connecting them with a population model
(see [2] and references therein). More frequently, model (2) is derived from model (1)
through various arguments [16, 2]. This is a little surprising, since the dynamics of the
traits should reflect the characteristics of the mutation and selection processes, which,
however, are not included in the resident model (1). In fact, the most transparent
approach for deriving the evolutionary model (2) is the so-called adaptive dynamics
approach [15, 22, 6, 13, 12] based on the resident-mutant models, which describe the
interactions among three populations, namely, the two resident populations and a
mutant population with trait x′

1 or x′
2. (Notice that this approach rules out the

possibility that prey and predator mutants are present at the same time.) When the
prey population is split into two subpopulations (resident and mutant) with densities
n1 and n′

1 and traits x1 and x′
1, the model is

ṅ1 = n1f1(n1, n2, n
′
1, x1, x2, x

′
1),

ṅ2 = n2f2(n1, n2, n
′
1, x1, x2, x

′
1),

ṅ′
1 = n′

1f
′
1(n1, n2, n

′
1, x1, x2, x

′
1).

(3)

The initial value of n′
1 in these equations is very small because a mutant population is

initially composed of one or a few individuals. A similar third-order model involving
the mutant trait x′

2, the density n′
2, and the function f ′

2 describes the case in which
the mutant is a predator. In the ecological literature, models like model (3) are
often called “competition models” because they describe the competition between
two similar populations. Obviously, model (3), together with its companion model
for the predator mutation, contains more information than the resident model (1).
Indeed, the latter can be immediately derived from the former by disregarding the
mutant equation and letting n′

1 = n′
2 = 0, thus obtaining

Fi(n1, n2, x1, x2) = fi(n1, n2, 0, x1, x2, x
′
i),

where the function fi(n1, n2, 0, x1, x2, x
′
i) does not depend on x′

i. The functions fi and
f ′
i , identifying the right-hand sides of the resident-mutant models, are called fitness

functions, and they enjoy a number of structural properties. Function fi, i = 1, 2,
satisfies the condition

fi(n1, n2, n
′
1, x1, x2, x1) = Fi(n1 + n′

1, n2, x1, x2)

because, when x1 = x′
1, resident and mutant individuals do not differ, so that only

the total number of prey (n1 + n′
1) matters. Function f ′

1 is defined by

f ′
1(n1, n2, n

′
1, x1, x2, x

′
1) = f1(n′

1, n2, n1, x
′
1, x2, x1)

because either one of the two prey subpopulations can be considered as mutant,
provided the other is considered as resident. Of course, the same properties hold
for the functions f1, f2, and f ′

2 appearing in the competition model for the predator
mutation.

Now that we have defined the resident model (1) and the resident-mutant model
(3), we can show how the evolutionary model (2) can be derived following the adaptive
dynamics approach. For this, assume that the resident population model (1) with
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traits x1 and x2 is at its equilibrium n̄(x1, x2) when a mutant appears. If mutations
are rare at ecological timescale, the initial conditions (n̄1(x1, x2), n̄2(x1, x2), n′

1) can
be used in model (3) to determine the fate of the mutant population. If the mutant
population does not invade, i.e., if

f ′
1(n̄1(x1, x2), n̄2(x1, x2), n′

1, x1, x2, x
′
1) < 0(4)

for all small n′
1 > 0, then it becomes extinct and the final result is still a pair of

resident populations with traits x1 and x2 and densities n̄1(x1, x2) and n̄2(x1, x2).
By contrast, it can be proved [11] that if (4) holds with the opposite inequality sign
and if mutations are small (i.e., x′

1 differs only slightly from x1), then the resident
population generically becomes extinct and is replaced by the mutant population
with density n̄1(x′

1, x2). In other words, each mutation brings a new trait into the
system, but competition between resident and mutant populations selects the winner,
namely, the trait that remains in the system. This kind of evolution of the traits is
called monomorphic evolution. This process of mutation and selection can be further
specified by making suitable assumptions on the frequency and distribution of small
mutations [6, 5], and the conclusion is that the rate at which the trait xi varies at
evolutionary timescale is given by the following ODE, called the canonical equation
of adaptive dynamics:

ẋi = kin̄i(x1, x2)
∂f ′

i

∂x′
i

∣∣∣∣ n1=n̄1(x1,x2)

n2=n̄2(x1,x2)

n′
i=0;x′

i=xi

,(5)

where ki is proportional to the frequency and variance of mutations, n̄i(x1, x2) is the
equilibrium density of the resident model, and ∂f ′

i/∂x
′
i is the derivative of the fitness

of the mutant, called the selective derivative. Equation (5), written for the prey and
for the predator, gives two ODEs that form the evolutionary model (2) with

Gi(x1, x2) = n̄i(x1, x2)
∂f ′

i

∂x′
i

∣∣∣∣ n1=n̄1(x1,x2)

n2=n̄2(x1,x2)

n′
i=0;x′

i=xi

.(6)

Thus, model (5) describes the monomorphic coevolution of the traits under the as-
sumption of rare and random mutations of small effects. Monomorphic evolutionary
dynamics are usually presented by drawing a few trajectories of model (5) in the sta-
tionary coexistence region. This set of trajectories, called the coevolutionary portrait,
points out, as sketched in Figure 1, all relevant invariant sets (equilibria, limit cycles,
and saddle separatrices). Some trajectories of the coevolutionary portrait (see gray
regions in Figure 1) reach the boundary of the stationary coexistence region, thus
implying the extinction of one of the two populations.

Figure 2 schematically summarizes monomorphic evolution and highlights the
different roles played by the three models we have introduced. The ecological literature
mainly deals with the resident model (1) since ecologists are interested in the short-
term dynamics of the populations and usually do not even consider the possibility of
having a mutant population involved in the game. By contrast, theoretical studies
on evolution are based on formal evolutionary models (2), or on verbal theories that
can be considered as a sort of surrogate of these models. Figure 2 points out two
facts. The first is that both the resident model (1) and the evolutionary model (2)
are needed if one is interested in the population dynamics entrained at evolutionary
timescale by the dynamics of the traits. The second is that the resident-mutant



1382 FABIO DERCOLE, JEAN-OLIVIER IRISSON, SERGIO RINALDI

-1 0 1

-1

0

1

p
r
e
d
a
t
o
r
t
r
a
it
,
x
2

prey trait, x1

Fig. 1. Example of a coevolutionary portrait in the stationary coexistence region. The portrait
is characterized by three equilibria (two stable foci (filled circles) and one saddle (half-filled circle))
and two limit cycles (one stable (thick line) and one unstable (dashed line)).
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Fig. 2. Flow chart demonstrating the relationships among resident-mutant models, the resident
model, and the evolutionary model.

model (3) is a “source” model, namely, a model that contains the information needed
to answer all questions. Unfortunately, the scheme of Figure 2 is not always taken
into account, and evolutionary models (2) are often derived directly from the resident
model through arguments, which at best give the same result that a hidden equivalent
resident-mutant model would give.

Once monomorphic dynamics has found a halt at a stable monomorphic equilib-
rium x̄, one can look at the second-order terms in the Taylor expansion of the mutant
fitness function to establish whether the equilibrium is a branching point [13] or not.
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More precisely, a stable equilibrium x̄ is said to be a branching point if

∂2f ′
i

∂x′2
i

∣∣∣∣ n1=n̄1(x̄1,x̄2)

n2=n̄2(x̄1,x̄2)

n′
i=0;x′

i=xi;x=x̄

> 0(7)

and

∂2f ′
i

∂x′
i∂xi

∣∣∣∣ n1=n̄1(x̄1,x̄2)

n2=n̄2(x̄1,x̄2)

n′
i=0;x′

i=xi;x=x̄

< 0(8)

for i equal to 1 or 2, since small mutations of the ith population invade and coexist,
at equilibrium, with the former resident [12]. Thus, branching points are the origin
of dimorphism. Of course, after a branching has occurred, there are three resident
populations, and one can continue the analysis by deriving the three corresponding
canonical equations.

A model of prey-predator coevolution. In this section we specify the prey-
predator coevolution problem, which is analyzed in what follows. First we present the
resident prey-predator model that has most often been used in the last few decades
to predict prey and predator abundances at ecological timescales in the absence of
mutations. We then extend this model to a scenario in which a mutant population is
also present, by adding a third ODE for the mutant population and by specifying the
dependence of the demographic parameters upon the traits of the resident and mutant
populations. This produces a resident-mutant population model from which, following
the scheme described in the previous section, we finally derive an evolutionary model
of the form (2) (details are relegated to the appendix).

The population model we consider is the well-known Rosenzweig–MacArthur
prey-predator model [26]:

ṅ1 = n1

(
r − cn1 − a

1 + ahn1
n2

)
,

ṅ2 = n2

(
e

an1

1 + ahn1
− d

)
,

(9)

where r is prey growth rate per capita, c is prey intraspecific competition, a is predator
attack rate, h is predator handling time (namely, the time needed by each predator
to handle and digest one unit of prey), e is efficiency (namely, a conversion factor
transforming each unit of predated biomass into predator newborns), and d is predator
death rate. The reader interested in more details on the biological interpretation of
the parameters can refer to [23]. The six positive parameters of the model (r, c, a,
h, e, d) could be reduced to three through rescaling. However, we do not follow this
option because it would complicate the biological interpretation of the dependence
of the parameters upon the prey and predator traits. In order to have a meaningful
problem, one must assume that e > dh, because otherwise the predator population
cannot grow even in the presence of an infinitely abundant prey population.

For any meaningful parameter setting, model (9) has a global attractor in R
2
+,

namely,
(a) the trivial equilibrium (r/c, 0) if d/a(e− dh) ≥ r/c,
(b) the strictly positive equilibrium

n̄1 =
d

a(e− dh)
, n̄2 =

c

a

(
r

c
− d

a(e− dh)

)(
1 + ah

d

a(e− dh)

)
(10)
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if

rah− c

2ahc
≤ d

a(e− dh)
<

r

c
,(11)

(c) a strictly positive limit cycle if d/a(e− dh) < (rah− c)/(2ahc).

The transition from (a) to (b) is a transcritical bifurcation (which is generic in the
class of positive systems of the form (9)), while the transition from (b) to (c) is a
supercritical Hopf bifurcation (see [17] for a proof).

If we now imagine that a mutant population is also present, we can enlarge model
(9) by adding a third ODE and by slightly modifying the equations of the resident
populations in order to take the mutant population into account. Of course we also
need to specify how the parameters depend upon the traits x1, x2, x′

1, x′
2. The num-

ber of possibilities is practically unlimited, because even for well-identified prey and
predator species there are many meaningful options. Thus, at this level of abstrac-
tion, it is reasonable to limit the number of parameters sensitive to the traits, and to
avoid trait dependencies that could give rise to biologically unrealistic evolutionary
dynamics, like the unlimited growth of a trait (so-called runaway). Our choice has
been to assume that the parameters r, e, and d are independent of the traits, because
this will allow us to compare our results with those obtained in [7]. Thus, in the case
of a mutation in the prey population, the resident-mutant model is

ṅ1 = n1

(
r − c(x1, x1)n1 − c(x1, x

′
1)n′

1

− a(x1, x2)

1 + a(x1, x2)h(x1, x2)n1 + a(x′
1, x2)h(x′

1, x2)n′
1

n2

)
,

ṅ2 = n2

(
e

a(x1, x2)n1 + a(x′
1, x2)n′

1

1 + a(x1, x2)h(x1, x2)n1 + a(x′
1, x2)h(x′

1, x2)n′
1

− d

)
,

ṅ′
1 = n′

1

(
r − c(x′

1, x1)n1 − c(x′
1, x

′
1)n′

1

− a(x′
1, x2)

1 + a(x1, x2)h(x1, x2)n1 + a(x′
1, x2)h(x′

1, x2)n′
1

n2

)
.

(12)

The traits are assumed to be real variables obtained from the actual phenotypic traits
through a suitable nonlinear scaling that maps the positive interval of the phenotype
into the real axis. Thus, the maximum and minimum values of the prey (predator)
phenotype correspond to the limit values ∞ and −∞ of x1 (resp., x2). Similarly, in
the case of a mutation in the predator population, the resident-mutant model is

ṅ1 = n1

(
r − c(x1, x1)n1

− a(x1, x2)

1 + a(x1, x2)h(x1, x2)n1
n2 − a(x1, x

′
2)

1 + a(x1, x′
2)h(x1, x′

2)n1
n′

2

)
,

ṅ2 = n2

(
e

a(x1, x2)n1

1 + a(x1, x2)h(x1, x2)n1
− d

)
,

ṅ′
2 = n′

2

(
e

a(x1, x
′
2)n1

1 + a(x1, x′
2)h(x1, x′

2)n1
− d

)
.

(13)
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Fig. 3. Bifurcation diagram of evolutionary model (5) with respect to predator efficiency e
and optimum prey trait γ and corresponding sketches of coevolutionary state portraits. Panels a,
b, and c are magnified views of the bifurcation diagram. Parameter values are r = 0.5, d = 0.05,
k1 = k2 = 1, γ0 = 0.01, γ1 = 0.5, γ2 = 1, α = 1, α0 = 0.01, α1 = 1, α2 = 1, α3 = 0.6, θ = 0.9,
θ1 = θ2 = 0.5, θ3 = θ4 = 1.

The functional forms specifying the parameters’ dependence upon the traits are re-
ported in the appendix and are such that the left-hand inequality of condition (11)
(i.e., (rah− c)/(2ahc) ≤ d/(a(e− dh))) is always satisfied. (This excludes the possi-
bility of population cycles.) Thus, the boundary of the stationary coexistence region
is simply the set of pairs (x1, x2) for which d/(a(e−dh)) = r/c (see (11)). This means
that on that boundary n̄2(x1, x2) = 0; i.e., the predator population becomes extinct
if the traits reach the boundary of the stationary coexistence region.

At this point, (6) can be used to derive the evolutionary model (2), since the
strictly positive equilibrium n̄(x1, x2) is known (see (10)). The analytic expressions
of the selective derivatives and of the second-order derivatives needed for evaluating
the branching conditions (7), (8) are not reported because they are very long. In any
case, they can be easily derived by means of any software for symbolic computation.

Bifurcation analysis. The evolutionary model derived in the previous sec-
tion has been studied through numerical bifurcation analysis. Local and global
codimension-1 bifurcations with respect to various parameters have been obtained
by means of specialized software based on continuation techniques [9, 8, 18]. Moreover,
two-dimensional bifurcation diagrams have been produced by focusing on codimension-
2 bifurcation points [17].

The first surprising result is that the evolutionary model is much richer than the
resident population model. In fact, while the latter is characterized by two bifur-
cations, in the former twelve bifurcations have been detected. Figure 3 shows these
bifurcations in the space (e, γ), where e is predator efficiency and γ is the prey trait
value (called optimum) at which intraspecific competition is minimum. In general,
both parameters are influenced by environmental factors. For example, the efficiency
of an herbivore (predator) depends upon the caloric content of its prey (grass), which,
in turn, is mainly fixed by humidity, temperature, and soil composition. Figure 3



1386 FABIO DERCOLE, JEAN-OLIVIER IRISSON, SERGIO RINALDI

0.2 0.25
0

0.2

0.4

0.6

0.8

1

2

3 5 6

7

0.2 0.25 0.3
0

0.5

1

1.5

2

1 2

3

4 7

6

5

9

8

12 5

1

3 9

Fig. 4. Bifurcation diagram of evolutionary model (5) with respect to predator efficiency e and
mutation frequency ratio k1/k2 (A) and handling time θ (B). See Figure 3 for coevolutionary state
portraits and parameter values.

points out that there are fourteen subregions in the parameter space characterized by
different coevolutionary portraits. In each one of them, for simplicity, the boundary of
the stationary coexistence region, where the predator population becomes extinct, is
not shown. This, however, fails to point out, graphically, that evolutionary extinction
of the predator population occurs in all cases, as shown in Figure 1, which is actually
the coevolutionary portrait corresponding to subregion 11. It is worth noticing that
this form of evolutionary extinction is always an evolutionary murder. In fact, on the
boundary of the stationary coexistence region ẋ2 = 0, because n̄2 = 0 in (5); i.e., the
predator trait is locally constant while the prey trait varies.

Coevolutionary attractors can be equilibria or limit cycles, and the existence of
alternative attractors is rather common. When they exist, attracting cycles surround
all equilibria. Actually, there can be up to three alternative attractors (two equilibria
and one cycle), as shown by the coevolutionary portraits 10, 11, 13, and 14. There
are ten codimension-2 bifurcation points, namely a cusp (C), two generalized Hopf
(GH1 and GH2), two Bogdanov–Takens (BT1 and BT2), four noncentral saddle-node
homoclinic loops (S1, S2, B1, and B2), and a double homoclinic loop (D) (see [17]).

No other bifurcation curves and codimension-2 bifurcation points are present in
the two extra bifurcation diagrams presented in Figure 4, where the coevolutionary
portraits are intentionally not shown to stress that they are exactly as in Figure 3.
The parameter on the horizontal axis of these two bifurcation diagrams is still the
efficiency of the predator, while the parameter on the vertical axis is related to two
important characteristics of the mutation and predation processes, namely, the ratio
k1/k2 between the frequencies of prey and predator mutations, and the predator
handling time θ corresponding to the maximum attack rate (see the appendix).

The bifurcation diagrams are very useful for deriving interesting biological prop-
erties concerning the impact of various factors on coevolution. For example, one could
be interested in identifying the factors favoring the so-called Red Queen dynamics,
namely, the possibility of cyclic coevolution of the traits. For this, one should extract
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Fig. 5. Red Queen dynamics: in the white regions cyclic coevolution is not possible, while in
the gray regions it is the only long-term form of coevolution. In the black regions both stationary and
cyclic coevolution are possible. Panels (A), (B), and (C) are extracted from the bifurcation diagrams
of Figures 3, 4(A), and 4(B), respectively.

from each bifurcation diagram the subregions 2–4, 8–14, where at least one of the
coevolutionary attractors is a limit cycle. The result is Figure 5, which shows where
cyclic coevolution is the only possible outcome (gray regions) and where stationary co-
evolution is also possible (black regions). Figure 5 indicates that Red Queen dynamics
occur only for intermediate values of predator efficiency. Thus, slow environmental
drifts entraining slow but continuous variations of predator efficiency can promote the
disappearance of Red Queen dynamics. However, if efficiency decreases, Red Queen
dynamics disappear smoothly through a supercritical Hopf bifurcation (where the at-
tracting evolutionary cycle shrinks to a point). By contrast, if efficiency increases,
Red Queen dynamics disappear discontinuously through a catastrophic bifurcation
(tangent bifurcation of limit cycles). Figure 5 also indicates other biologically rele-
vant properties, such as the fact that Red Queen dynamics are facilitated by high
(low) frequency of prey (predator) mutation, and by low predator handling times.
This last result shows that the highest chances for cyclic coevolution are obtained
when θ = 0, i.e., when the Rosenzweig–MacArthur model degenerates into the Lotka–
Volterra model. This brings us to the following rather intriguing conclusion: the
Lotka–Volterra assumptions (which do not give rise to population cycles) can easily
explain coevolutionary cycles, while the Rosenzweig–MacArthur assumptions (which
can easily give rise to population cycles) can hardly support Red Queen dynamics.

Extra information can be added to the bifurcation diagrams of Figures 3 and
4 by specifying whether the stable monomorphic equilibria (x̄1, x̄2) are branching
points (B) or not (NB). This can be easily done by computing (through continuation)
the curves where conditions (7), (8) are critical. Thus, any region of parameter
space characterized by only one stable monomorphic equilibrium can, in principle,
be partitioned into four subregions: in one of these subregions monomorphism is the
only form of coevolution, while in the other three regions dimorphism is possible
through the branching of one of the two populations or of both. However, in all of the
numerical experiments that we have performed, only prey branching occurred. This
is consistent with the well-known principle of “competitive exclusion” [14]. In fact, if
the predator population would branch, the system would converge to an equilibrium
with two slightly different predators and one prey, in contrast with the competitive
exclusion principle. In conclusion, there are only two possibilities: (x̄1, x̄2) is not a
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Fig. 6. In the gray and black regions (extracted from Figure 3) the evolutionary model (5) has
only one stable equilibrium, which is either a branching point (B) for the prey population or not
(NB).

branching point or it is a branching point for the prey population. In other words, our
findings are in line with biological principles and support the idea [4] that predators
are promoters of prey species diversity. Figure 6 shows how the region characterized
by a unique stable equilibrium (x̄1, x̄2) is partitioned into B and NB subregions. The
result is rather interesting if it is complemented with what has already been discovered
about the disappearance of Red Queen dynamics induced by variations of predator
efficiency. In fact, the overall conclusion is that Red Queen dynamics disappear
abruptly if predator efficiency increases, and smoothly if predator efficiency decreases.
However, in the latter case, as soon as Red Queen dynamics disappear, dimorphism
can occur in the prey population. Thus, environmental drifts of any sign can give rise
to discontinuities in the dynamics of the traits. This observation proves once more
that coevolution is an astonishingly complex dynamic process.

Discussion and conclusions. The problem of prey-predator coevolution has
been investigated in this paper from a purely mathematical point of view. For this,
the classic Rosenzweig–MacArthur model (logistic prey and predator with saturat-
ing functional response) has first been transformed into a resident-mutant model by
adding a third equation for the mutant population. Then, an evolutionary model
describing the slow dynamics of the traits has been derived from the resident-mutant
model through the standard adaptive dynamics approach [15, 22, 6, 13, 12]. The
bifurcation analysis of the evolutionary model has shown that the dynamics of the
traits at evolutionary timescale are much more complex than the dynamics of the
populations at ecological timescale. The numerically produced bifurcation diagrams
have proved to be powerful tools for extracting qualitative information on the impact
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of various factors on coevolution. Conclusions like those we have obtained on the
impact of environmental drifts on evolutionary cycles (so-called Red Queen dynam-
ics) could not have been derived without performing a detailed bifurcation analysis
of an evolutionary model. A generally encouraging message emerging from this study
is that other very important biological problems, such as the evolution of mutual-
ism, cannibalism, and parasitism, could most likely be studied successfully through
the bifurcation analysis of the canonical evolutionary model. But the same approach
should also be very effective for studying relevant problems in social sciences and
economics, where mechanisms somewhat similar to biological mutation and selection
can sometimes be identified.

Limiting the discussion to the problem of prey-predator coevolution, we can say
that the results presented in this paper are far more complete than those available in
the literature. Indeed, the only comparable result is the bifurcation analysis presented
in [7], where a bifurcation diagram similar to that of Figure 4(A) was obtained through
simulation. That bifurcation diagram is incomplete and derived for a quite degener-
ate case, i.e., for a Lotka–Volterra model (θ = 0 in our model) with a very special
parameter combination reducing the number of bifurcation curves to six. However,
despite this double degeneracy, the analysis in [7] points out Red Queen dynamics,
multiple evolutionary attractors, and evolutionary murder. A comparison with the
nonmathematical literature (see, for example, [24, 25] and [1]) neither contradicts nor
supports our findings.

Even if what we have presented in this paper might seem rather general, the
analysis should first be repeated for many other prey-predator models and for dif-
ferent assumptions on the trait dependence of the demographic parameters, and a
comparative analysis should be performed in order to extract biologically significant
results. Moreover, there are a number of possible interesting extensions. First, one
could investigate the dynamics of dimorphism by applying the bifurcation approach
followed in this paper to more complex population assemblies, composed, for exam-
ple, of one resident predator population and two resident prey populations. The
outcome of such a study could be that a predator branching generating a second res-
ident predator population is possible, because this outcome is not in conflict with the
principle of competitive exclusion. Second, while remaining in the simple context of
monomorphism, one could be interested in detecting the prey-predator coevolutionary
dynamics under the assumption that the two populations can coexist by cycling at
ecological timescale. This extension is absolutely not trivial, because the derivation
of the evolutionary model is rather difficult in this case. However, the problem is of
great interest because its analysis could perhaps help to answer the very intriguing
question: does coevolution destabilize populations? Third, one could be interested in
extending the analysis to the coevolution of tritrophic food chains composed of a prey,
a predator, and a superpredator population. From the results obtained in this paper,
showing that evolutionary dynamics of ditrophic food chains (composed of a prey and
a predator population) are much more complex than the corresponding population
dynamics, one should naturally be inclined to conjecture that chaotic coevolutionary
dynamics should be possible in tritrophic food chains. The proof of this conjecture
would be a great result.

Appendix. In this appendix we specify how the prey intraspecific competition
c, the predator attack rate a, and the predator handling time h, appearing in the
resident-mutant models (12), (13), depend upon the resident and mutant traits. Due
to our definition of the traits, which are scaled measures of the phenotypes, c, a, and



1390 FABIO DERCOLE, JEAN-OLIVIER IRISSON, SERGIO RINALDI

h are bounded functions of the traits. Unless otherwise stated, all the parameters
appearing in these functions are assumed to be positive.

Prey intraspecific competition c is given by

c(x1, x
′
1) =

γ1 + γ2 (x1 − γ)
2

1 + γ0(γ1 + γ2 (x1 − γ)
2
)
.(A1)

Notice that c depends only upon its first argument. This means that resident prey
individuals face the same competition when they are opposed to other resident in-
dividuals or to mutant individuals. The parameter γ, which can be either positive
or negative, is the value of the prey trait x1 (called optimum prey trait) at which
intraspecific competition is minimum (and equal to γ1/(1 +γ0γ1)). For prey traits x1

far from γ, intraspecific competition saturates at 1/γ0.
The predator attack rate a is the bell-shaped function

a(x1, x2) = α0 + α exp

(
−
(
x1

α1

)2

+ 2α3

(
x1

α1

)(
x2

α2

)
−
(
x2

α2

)2
)
,(A2)

where α3 < 1. If prey and predator traits are tuned, i.e., if x1 = x2 = 0, the predator
attack rate is maximum (and equal to α0 + α). When prey and predator traits are
far from being tuned, the predator attack rate drops to α0.

The predator handling time is the product of an increasing sigmoidal function of
the prey trait x1 and of a decreasing sigmoidal function of the predator trait x2,

h(x1, x2) = θ

[
1 + θ1 − 2θ1

1 + exp (θ3x1)

] [
1 + θ2 − 2θ2

1 + exp (−θ4x2)

]
,(A3)

where θ is the handling time corresponding to the tuned situation ((x1, x2) = (0, 0)),
referred to as handling time in Figures 4(B) and 5(C).

Finally, we have fixed r, d, and all the parameters of the functions c, a, and h at
the values indicated in the caption of Figure 3, and we have limited θ from above and
e from below so that the following two inequalities hold for all (x1, x2):

e− dh(x1, x2) > 0,
r

c(x1)
≤ 1

a(x1, x2)h(x1, x2)
.

These conditions guarantee that the left-hand inequality of condition (11) holds. Thus,
population cycles are ruled out from our study.
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