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Marine snow

• Up	to	XX	of	organic	biomass	in	the	ocean//	
Carbon	export	up	to	xx	

• High	diversity	
• Carbon	export	to	deep	ocean	largely	driven	
by	gravity	
—>	size	
—>	shape,	porosity,	composition

Morphological	traits
Can	be	measured	from	image-data		
—>	automated	|	objective	|	‘taxa’	independent	|	big	data



Marine (pelagic) imaging
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Irisson	et	al.	(2021)



Marine (pelagic) imaging
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Need for an objective & reproducible 
way to extract information 

Irisson	et	al.	(2021)
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—>	symmetry

Feature extraction
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Imaging Feature	extraction
45	morphological	features:	
—>	size	
—>	shape	
—>	grey	level	
—>	symmetry

Groups	of	morphological		
similar	particles

Pipeline	to	define	particle	morphological	groups		
using	image-derived	features

Feature extraction

Subset	of	UVP	data	by	LOV	and	Geomar	
—>	n=896,095	images	
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PCA	including	all	45	morphological	features	(1	dot	=	1	imaged	parfcle)
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1) Dimension reduction
PCA	including	all	45	morphological	features	(1	dot	=	1	imaged	parfcle)
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depending	on	the	time	when	practicing		
(most	likely	not	not)

Ax.	1

Ax
.	2



6

1) Dimension reduction
PCA	including	all	45	morphological	features	(1	dot	=	1	imaged	parfcle)

I	decide	if	I	keep	this	slide/graph		
depending	on	the	time	when	practicing		
(most	likely	not	not)

		Ax.	1		

		A
x.
	2
		

Ax.	1

Ax
.	2



7

2) Definition of “morphs”
unsupervised	clustering	(k-means)…

k=200
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…followed	by	hierarchical	clustering	on	cluster	centres

2) Definition of “morphs”
unsupervised	clustering	(k-means)…

(ward.D2)

Final	morph	groups
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2) Definition of “morphs”
unsupervised	clustering	(k-means)…

(ward.D2)

Final	morph	groups
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Geographical pattern
Proportion	of	“long	&	large”	objects	in	surface	layer

5mm

I’ll	decide	which	one	to	keep	(or	which	one)	
(this	one	or	the	next	slide)
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Geographical pattern
Proportion	of	“small	&	dark”	objects	in	surface	layer

5mm

I’ll	decide	which	one	to	keep	(or	which	one)



✓	It	is	possible	to	define	groups	of	morphological	similar	particles	
	based	on	image-derived	features	
—>	It’s	meaningful!
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					…and	hopefully	improve/facilitate	our	understanding	of		
						ecological	processes!

Decide	if	mentioning	ecopart-part



Thank you for your attention!
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