Constraining calcium isotope fractionation ($\delta^{44/40}$Ca) in modern and fossil scleractinian coral skeleton

Chloé Pretet a,⁎, Elias Samankassou a, Thomas Felis b, Stéphanie Reynaud c, Florian Böhm d, Anton Eisenhauer d, Christine Ferrier-Pagès e,f, Jean-Pierre Gattuso e,f, Gilbert Camoin g

a Section of Earth and Environmental Sciences, University of Geneva, Rue des Marchâles 13, CH-1205 Geneva, Switzerland
b MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany
c CNRS-INSU, Laboratoire d'Océanographie de Villefranche, BP 28, 06234 Villefranche-sur-Mer Cedex, France
d Helmholtz Zentrum für Ozeanforschung (GEOMAR), Wischhofstr. 1-3, 24148 Kiel, Germany
e CNRS-INSU, Laboratoire d'Océanographie de Villefranche, BP 28 06234 Villefranche-sur-Mer, France
f Université Pierre et Marie Curie-Paris 6, Observatoire Océanologique de Villefranche, 06230 Villefranche-sur-Mer, France
g CEREGE, UMR 6635, CNRS, BP 80, F-13545 Aix en Provence cedex 4, France

A R T I C L E I N F O

Article history:
Received 24 April 2012
Received in revised form 10 December 2012
Accepted 12 December 2012
Available online 19 December 2012

Editor: U. Brand

Keywords:
Calcium isotope
Modern/fossil scleractinian corals
Sea surface salinity
Sea surface temperature
Biomineralization

A B S T R A C T

The present study investigates the influence of environmental (temperature, salinity) and biological (growth rate, inter-generic variations) parameters on calcium isotope fractionation ($\delta^{44/40}$Ca) in scleractinian coral skeleton to better constrain this record. Previous studies focused on the $\delta^{44/40}$Ca record in different marine organisms to reconstruct seawater composition or temperature, but only few studies investigated corals. This study presents measurements performed on modern corals from natural environments (from the Maldives for modern and from Tahiti for fossil corals) as well as from laboratory cultures (Centre Scientifique de Monaco). Measurements on Porites sp., Acropora sp., Montipora verrucosa and Stylorhapha pistillata allow constraining inter-generic variability.

Our results show that the fractionation of $\delta^{44/40}$Ca ranges from 0.6 to 0.1‰, independent of the genus or the environmental conditions. No significant relationship between the rate of calcification and $\delta^{44/40}$Ca was found. The weak temperature dependence reported in earlier studies is most probably not the only parameter that is responsible for the fractionation. Indeed, sub-seasonal temperature variations reconstructed by δ^{18}O and Sr/Ca ratio using a multi-proxy approach, are not mirrored in the coral’s $\delta^{44/40}$Ca variations. The intergeneric variability and intrageneric variability among the studied samples are weak except for S. pistillata, which shows calcium isotope values increasing with salinity. The variability between samples cultured at a salinity of 40 is higher than those cultured at a salinity of 36 for this species. The present study reveals a strong biological control of the skeletal calcium isotope composition by the polyp and a weak influence of environmental factors, specifically temperature and salinity (except for S. pistillata). Vital effects have to be investigated in situ to better constrain their influence on the calcium isotope signal. If vital effects could be extracted from the isotopic signal, the calcium isotopic composition of coral skeletons could provide reliable information on the calcium composition and budget in ocean.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Calcium is an essential element in many geological and biological processes (see review in DePaolo, 2004). Calcium isotopic fractionation ($\delta^{44/40}$Ca) was studied in various marine organisms including foraminifera (Gussone et al., 2003; Griffith et al., 2008; Gussone et al., 2009; Hippler et al., 2009; Gussone et al., 2010), coccoliths (Gussone et al., 2007; Langer et al., 2007), rudists (Immenhauser et al., 2005), brachiopods (von Allmen et al., 2010), dinoflagellate (Gussone et al., 2010) and bivalves (Heinemann et al., 2008). These studies revealed a significant relationship between calcium isotopic fractionation and temperature (Nägler et al., 2000; Gussone et al., 2003), mineralogy (Gussone et al., 2005) and inter-generic differences (Gussone et al., 2006, 2007). These studies on biogenic calcite or aragonite were extended to experimental precipitates (e.g. Lemarchand et al., 2004; Tang et al., 2008). Differences in calcium isotopic composition between inorganic and biogenic precipitates were reported (Gussone et al., 2006). Calcium isotopic fractionation was used to reconstruct seawater composition and calcium balance in ocean through time (De La Rocha and DePaolo, 2000) but some uncertainties remain. Some studies argue for disequilibrium between outputs and inputs (Zhu and MacDougall, 1998), whereas other studies suggest a balanced budget (e.g. Schmitt et al., 2003; Fantle and DePaolo, 2005). Some modeling
studies have proposed that variations of $\delta^{44/40}$Ca are influenced by secular variations in seawater composition, specifically by shifts from aragonitic to calcitic seas, or carbonate precipitation (Farkas et al., 2007a,b). Thus, many uncertainties about calcium isotopic fractionation in biogenic carbonates remain.

Zooxanthellate scleractinian corals are widely used to reconstruct paleoenvironmental changes (e.g. Weber and Woodhead, 1970; Swart, 1983; Gagan et al., 2000; Felis and Pätzold, 2003; Corrège, 2006); the oxygen isotopic composition of the skeleton is a proxy for sea surface temperature (SST) and seawater isotopic composition ($\delta^{18}O_{\text{sw}}$) (e.g. Cole et al., 1993; Linsley et al., 1994; Quinn et al., 1998; Felis et al., 2009); the carbon isotopic composition is used to understand coral physiology ($\delta^{13}C$; e.g. Felis et al., 1998; Heikoop et al., 2000; Jullet-Leclerc and Reynaud, 2010); in addition, boron isotopic composition appears to be an indicator for pH (e.g. Hönsch et al., 2004; Reynaud et al., 2004; Pelejero et al., 2005; Taubner et al., 2010). However, the calcium isotopic composition of corals, particularly with respect to interspecific variations and influences of environmental parameters is poorly constrained (Halicz et al., 1999; Chang et al., 2004; Böhm et al., 2006).

Furthermore, coral skeletons are prone to diagenetic alteration (McGregor and Gagan, 2003; Allison et al., 2007; Hathorne et al., 2011). Thus, along with potential vital effects that could affect the isotopic signals recorded in the skeleton, a careful screening for alteration using techniques such as microscopy, powder X-ray diffraction (XRD) and laser ablation ICP-MS is required prior to any analysis or data interpretation (Hathorne et al., 2011; Felis et al., 2012). The evaluation of vital effects requires a detailed knowledge of polyp biology and biomechanics including calcification (Cohen and McConnaughey, 2003; Allemand et al., 2004; Tambutte et al., 2011), calcification (Cohen and McConnaughey, 2003; Allemand et al., 2004; Tambutte et al., 2011), calcification (Cohen and McConnaughey, 2003; Allemand et al., 2004; Tambutte et al., 2011), calcification (Cohen and McConnaughey, 2003; Allemand et al., 2004; Tambutte et al., 2011), calcification (Cohen and McConnaughey, 2003; Allemand et al., 2004; Tambutte et al., 2011), growth rate and other parameters that may influence the isotopic fractionation in the skeleton. Processes involved in coral skeleton calcification are still under debate and there is no consensus regarding the ion pathway from seawater to calcification area (Tambutte et al., 1996; Gaetani et al., 2011; Tambutte et al., 2011). The understanding and quantification of biomineralization require discriminating the influence of environmental factors.

The present study focuses on the biological and environmental parameters that are fundamental in interpreting calcium isotopic signals in coral skeletons, specifically (1) linear extension rate and inter- and intra-generic variations; and (2) sea surface temperature (SST) and sea surface salinity (SSS). The interpretation is based on a systematic investigation of these parameters using coral sample sets from various locations, different ages and genera.

2. Material and methods

2.1. Fossil corals from Tahiti

The fossil coral material was recovered by the Integrated Ocean Drilling Program (IODP) Expedition 310 off Tahiti, French Polynesia, in the central tropical South Pacific Ocean (Fig. 1) (Camoin et al., 2007). The modern sea surface temperature mean is 27.5±0.2 °C and varies between 26.2 °C (August) and 28.8 °C (March). The modern sea surface salinity mean is around 36 [1982–1995. Salinity and temperature data derived from Integrated Global Ocean Services System (IGOSS) Products bulletin; http://iridl.ldeo.columbia.edu/SOURCES/IGOSS/; Asami et al., 2009]. The massive Porites sp. coral investigated in the present study (310-M0018A-19R-1W–49–45) was recovered from 115 m below present sea level (33 m below sea floor) at the outer shelf of Maraa located on the south side of the island of Tahiti (Hole M0018A; 17°46.0124′S, 149°32.8433′W, Fig. 1). X-radiography of the slabbed coral revealed skeletal density banding with no evidence for diagenetic cements (Fig. 2). Furthermore, XRD analyses confirmed that the coral skeleton in all samples is pristine (see Deschamps et al., 2012; Felis et al., 2012). Using a 0.8 mm diameter drill bit, samples were obtained from the coral slab by continuous spot-sampling along the major growth axis, following a single fan of corallites.

2.2. Modern corals from the Maldives

Modern corals from natural environment were collected on 2010 in Maghoodoo Island, the Maldives (Faafu, Nilandhoo atoll, 3°04′55″N; 72°57′55″E; Fig. 1), northern Indian Ocean. Modern sea surface temperature varies between 28 °C and 31 °C (2005–2011 data: area average time series 72°E–73°E, 3°N–3°N) (MTMO_SST_9km.CR, Modis Terra, http://disc.sci.gsfc.nasa.gov/giovanni/overview/index.html). Monthly SST was lowest in December–January and highest in April–

Fig 1. Geographic location of the samples studied (A): The Maldives (B.1), Maghoodoo Island (B.2), along with the sampled transect (C.) and Tahiti (D.1) along with the location of IODP Hole M0018A (D.2, E) wherein coral samples originated from.
May (Edwards et al., 2001; Ministry of Environment, Energy and Water, 2007). Modern sea surface salinity mean is 35 ± 0.4 (data from 1958–1997, Woodworth, 2005). Coral samples of *Porites* sp., *Acropora* sp., and an unidentified massive coral species were collected at the same date and location along a transect from the lagoon to the open ocean (Fig. 1). Corals were ultrasonicated and rinsed several times, cut in slabs parallel to the growth axis and sampled on the tips using a drill tool and agate mortar. Thin-sections from slab counterparts were checked qualitatively for diagenesis. Microscopic analysis revealed a well-preserved aragonitic skeleton, without diagenetic cements, which was confirmed by the X-radiograph image. Powder XRD analysis performed at the Department of Geosciences, University of Fribourg (Switzerland), indicates that the coral skeleton is 100% aragonite (authors’ unpublished data).

2.3. Cultured corals from Monaco

Colonies of *Acropora* sp., *Stylophora pistillata* and *Montipora verrucosa* were cultured in the laboratory under controlled environmental conditions at different salinities obtained artificially: 36.2 (‘36’ in the following), 38 and 40 (Table 3). Coral tips were sampled from the same parent colony, glued on glass slides with Epoxy glue (Devcon® UV) and randomly distributed in aquaria with salinities of 38 during ten weeks (Reynaud-Vaganay et al., 1999). The corals were fed three times a week with *Artinella* nauplii. The aquaria were supplied with Mediterranean seawater pumped from 50 m depth. Seawater renewal rate was approximately five times per day and the seawater was continuously mixed with a Rena® pump (6 l·min⁻¹). To obtain artificial seawater at salinity 36 from the Mediterranean seawater originally at a salinity of 38, the natural seawater was mixed with distilled water and added with a peristaltic pump in an extra tank before reaching the experimental aquarium. Seawater at salinity 40 was obtained by mixing the Mediterranean seawater and the artificial water prepared with artificial salts to obtain a salinity of 50 (Instant Ocean, Aquarium Systems). The stability of the salinity was checked using a conductivity meter (Mettler LF 196) and recorded continuously. Some of the tips from the aquaria maintained at a salinity of 38 were transferred to another aquarium at a salinity of 40 and 36 after ten weeks. All transfers of coral tips were gradual (+0.5 salinity units per day) to avoid stress.

δ¹⁸Osw was measured 7, 11 and 5 times in the aquaria at a salinity of 36, 38 and 40, respectively, to test the effect of dilution or artificial salt addition in seawater. Evaporation, which is the main natural process involved in salinity increase, induces a faster removal of lighter isotopes and thus increases δ¹⁸Osw. Indeed, the addition of artificial salts, which is the method to increase salinity in the present study, could induce a bias in the geochemical process. Moreover, the addition of freshwater influences the δ¹⁸Osw of the aquarium. In experimental setting, these biases cannot be avoided. Seawater was maintained at 27.1 ± 0.1 °C using a temperature controller (EW, PC 902/T), and recorded each 10 min with Seamon® recorders (resolution: 0.025 °C, precision: ±0.1 °C). Metal halide lamps (Philips HPIT, 400 W) provided irradiance of 204 ± 3 μmol·m⁻²·s⁻¹ on a 12:12 photoperiod. Seawater was continuously aerated with outside air. All parameters were kept constant during the experiment: nutrition, irradiance, pH [8.08: measured with a combined Ross® electrode (Orion 8102SC) according to the Sea Water Scale], total alkalinity (2.6 meq·kg⁻¹: measured by potentiometric titration) and pCO₂ (adjusted in two buffer tanks using a pH controller; R305, Consort Inc.) (Reynaud-Vaganay et al., 1999; Reynaud-Vaganay, 2000).

At the end of the experiment, the skeleton deposited on the glass slide was removed with a scalpel (Reynaud-Vaganay et al., 1999), dried overnight at room temperature and stored in glass containers.

2.4. Measurement

Calcium isotopic analysis was conducted at GEOMAR (Kiel, Germany), using thermal ionization mass spectrometer (TIMS Finnigan Triton T) and double spike (⁴⁰Ca–⁴⁰Ca), following the method described in Heuser et al. (2002). Samples of about 300 ng Ca, dissolved in 2 N HCl were loaded with TaCl₅ activator after addition of ⁴⁰Ca–⁴⁰Ca double spike on zone-refined Re single filament. Measurements were made in dynamic mode with ⁴⁰Ca/⁴³Ca, ⁴²Ca/⁴³Ca, and ⁴⁴Ca/⁴³Ca measured in the main cycle and ⁴³Ca/⁴⁰Ca in the second cycle. Five samples and six standards (of which four are NIST SRM 915a and two are CaF₂) were loaded on a turret for 25 h duration and each sample was measured three times. Signal intensity during acquisition was typically 4–5 V for ⁴⁰Ca. The isotope values were expressed relative to NIST SRM 915a as δ⁴⁰Ca/(⁴⁰Ca/⁴⁰Ca)sample/(⁴⁰Ca/⁴⁰Ca)NIST SRM 915a - 1 ·1000 (Eisenhauer et al., 2004). ⁴⁰Ca/⁴³Ca values of each session were calculated with the session mean value of the standard NIST SRM 915a. The average precision for NIST SRM 915a during a session was ±0.08‰ (2SEM, N = 4). The long-term (2008–2012) mean ⁴⁰Ca/⁴³Ca of NIST SRM 915a was 0.0211842 ± 0.0000078 (2SD, N = 1006).

δ¹⁸O analyses of the fossil Tahiti coral were carried out at the University of Bremen following established methods (Felis et al., 2000, 2004, 2009). Sr/Ca analyses were carried out at the University of Bremen following the methods described in Felis et al. (2012) and Giry et al. (2012). A 0.20–0.32 mg split of the sample powder that was used for δ¹⁸O analyses was dissolved in 7 ml 2% suprapure HNO₃, containing 1 ppm Sc as internal standard. The calcium concentration of dissolved samples was 5–15 ppm. Measurements were performed on a Perkin-Elmer Optima 3300R simultaneous radial ICP-OES using a CETAC U5000-AT ultrasonic nebulizer. Element wavelengths were detected simultaneously in 3 replicates (Ca 317.933 nm, Ca 422.673 nm, Sr 421.552 nm, Sc 361.383 nm, Mg 280.271 nm). Calcium concentrations measured on an atomic line (422.673 nm) were averaged with the concentrations from an ion line (317.933 nm) to compensate for possible sensitivity drift in a radial ICP-OES. Calibration standards were diluted from a master standard with a Sr/Ca ratio of 9.099 mmol·mol⁻¹. A control standard set had calcium concentrations of 15 ppm and varying Sr concentrations yielding Sr/Ca ratios of 8.6–10 mmol·mol⁻¹. Measurements of a laboratory coral standard...
after each sample allowed offline correction for instrumental drift. Relative standard deviation of the Sr/Ca determinations was better than 0.2%.

δ¹⁸O of cultured coral skeleton from Monaco was measured by gas source mass spectrometer VG-OPTIMA®, using bracketing technique in CEA-CNRS (Laboratoire des Sciences du Climat et de l’Environnement, Gif-sur-Yvette, France) as described by Reynaud-Vaganay (2000). The measurements were expressed relative to PDB standard and the analytical precision was 0.16‰. The oxygen isotopic composition of aquaria seawater samples was measured on a Finnigan MAT 252 and the results expressed relative to SMOW standard. The reproducibility of the seawater δ¹⁸O measurements was 0.05‰ (SD).

Aliquots of the same samples were used for both analyses of isotopic ratios and elemental composition (δ¹⁸O, δ⁴⁴/⁴⁰Ca, Sr/Ca).

3. Results and discussion

δ⁴⁴/⁴⁰Ca, standard error of the mean (SEM) and repeats of all sample sets are listed in Table 1 (fossil coral from Tahiti), Table 2 (modern corals from the Maldives) and Table 3 (cultured corals from Monaco). The δ⁴⁴/⁴⁰Ca values ranged between 0.6 and 0.1‰ (Fig. 3); the overall mean δ⁴⁴/⁴⁰Ca was 0.81 ± 0.18‰ (2SD), in good agreement with results from previous studies (Böhm et al., 2006: 0.81±0.05‰).

According to several studies, the calcium isotopic composition of many biogenic carbonates differs from that expected for equilibrium precipitation in the ambient seawater. The result is an offset in isotopic fractionation, although the trend of δ¹⁸O and Sr/Ca analyses of the fossil Porites sp. revealed a continuous record of three years of skeletal growth. The seasonal linear extension rate was calculated using the clear seasonal cycles documented in δ¹⁸O and Sr/Ca (Fig. 4). The range of the linear extension rate was comparable to that obtained from previous studies (Lough and Barnes, 2000; Böhm et al., 2006; Asami et al., 2009). However, the relationship with total skeletal weight and calcification rate, which is related to density, was not investigated in the present study.

The linear extension rate of the fossil Tahiti Porites sp. varied by a factor of 2 to 3 depending on the season, but the calcium isotopic composition showed no correlated variation (Fig. 5). This result confirms previous assumptions that growth rate may not explain variations in δ⁴⁴/⁴⁰Ca aragonite of coral skeletons (Böhm et al., 2006). This is not in agreement with results obtained from inorganic calcite precipitation experiments, which showed that the precipitation rate strongly influenced the calcium isotopic fractionation, although the trend of the slope remained controversial (Lemarchand et al., 2004; Tan et

Table 1

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Sample number</th>
<th>δ⁴⁴/⁴⁰Ca (%)</th>
<th>2SEM (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>224</td>
<td>1</td>
<td>0.88</td>
<td>0.11</td>
<td>3</td>
</tr>
<tr>
<td>225</td>
<td>2</td>
<td>0.70</td>
<td>0.11</td>
<td>3</td>
</tr>
<tr>
<td>226</td>
<td>3</td>
<td>0.90</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>227</td>
<td>4</td>
<td>0.81</td>
<td>0.07</td>
<td>3</td>
</tr>
<tr>
<td>228</td>
<td>5</td>
<td>0.89</td>
<td>0.11</td>
<td>3</td>
</tr>
<tr>
<td>229</td>
<td>6</td>
<td>0.93</td>
<td>0.05</td>
<td>3</td>
</tr>
<tr>
<td>230</td>
<td>7</td>
<td>0.88</td>
<td>0.11</td>
<td>3</td>
</tr>
<tr>
<td>231</td>
<td>8</td>
<td>0.78</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>232</td>
<td>9</td>
<td>0.90</td>
<td>0.12</td>
<td>3</td>
</tr>
<tr>
<td>233</td>
<td>10</td>
<td>0.88</td>
<td>0.15</td>
<td>5</td>
</tr>
<tr>
<td>234</td>
<td>11</td>
<td>0.71</td>
<td>0.10</td>
<td>3</td>
</tr>
<tr>
<td>235</td>
<td>12</td>
<td>0.81</td>
<td>0.08</td>
<td>5</td>
</tr>
<tr>
<td>236</td>
<td>13</td>
<td>0.65</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>237</td>
<td>14</td>
<td>0.77</td>
<td>0.12</td>
<td>5</td>
</tr>
<tr>
<td>238</td>
<td>15</td>
<td>0.79</td>
<td>0.06</td>
<td>3</td>
</tr>
<tr>
<td>239</td>
<td>16</td>
<td>0.82</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>240</td>
<td>17</td>
<td>0.86</td>
<td>0.03</td>
<td>3</td>
</tr>
<tr>
<td>241</td>
<td>18</td>
<td>0.86</td>
<td>0.07</td>
<td>3</td>
</tr>
<tr>
<td>242</td>
<td>19</td>
<td>0.72</td>
<td>0.04</td>
<td>3</td>
</tr>
<tr>
<td>243</td>
<td>20</td>
<td>0.84</td>
<td>0.07</td>
<td>3</td>
</tr>
<tr>
<td>244</td>
<td>21</td>
<td>0.83</td>
<td>0.15</td>
<td>5</td>
</tr>
<tr>
<td>245</td>
<td>22</td>
<td>0.82</td>
<td>0.11</td>
<td>3</td>
</tr>
<tr>
<td>246</td>
<td>23</td>
<td>0.85</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>247</td>
<td>24</td>
<td>0.99</td>
<td>0.03</td>
<td>3</td>
</tr>
<tr>
<td>248</td>
<td>25</td>
<td>0.88</td>
<td>0.06</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location on the transect</th>
<th>Distance from the beach (m)</th>
<th>Water depth (m)</th>
<th>δ⁴⁴/⁴⁰Ca (%)</th>
<th>2SEM (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAL-XX1-1</td>
<td>Massive unidentified</td>
<td>Lagoon 50</td>
<td>0.75</td>
<td>0.10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MAL-XX2-1</td>
<td>Massive unidentified</td>
<td>Reef flat 150</td>
<td>0.90</td>
<td>0.06</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>MAL-XX3-1</td>
<td>Massive unidentified</td>
<td>Forereef 155</td>
<td>3.5</td>
<td>0.86</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MAL-XX3-2</td>
<td>Massive unidentified</td>
<td>Forereef 155</td>
<td>3.74</td>
<td>0.12</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Sample</th>
<th>Salinity</th>
<th>Genus</th>
<th>δ⁴⁴/⁴⁰Ca (%)</th>
<th>2SEM (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC-Acr-36/1</td>
<td>36</td>
<td>Acropora sp.</td>
<td>0.71</td>
<td>0.06</td>
<td>3</td>
</tr>
<tr>
<td>MC-Acr-36/2</td>
<td>36</td>
<td>Acropora sp.</td>
<td>0.8</td>
<td>0.04</td>
<td>3</td>
</tr>
<tr>
<td>MC-Acr-36/3</td>
<td>36</td>
<td>Acropora sp.</td>
<td>0.76</td>
<td>0.1</td>
<td>3</td>
</tr>
<tr>
<td>MC-Acr-38/1</td>
<td>38</td>
<td>Acropora sp.</td>
<td>0.77</td>
<td>0.10</td>
<td>3</td>
</tr>
<tr>
<td>MC-Acr-38/2</td>
<td>38</td>
<td>Acropora sp.</td>
<td>0.74</td>
<td>0.04</td>
<td>3</td>
</tr>
<tr>
<td>MC-Acr-40/1</td>
<td>40</td>
<td>Acropora sp.</td>
<td>0.72</td>
<td>0.03</td>
<td>3</td>
</tr>
<tr>
<td>MC-Acr-40/2</td>
<td>40</td>
<td>Acropora sp.</td>
<td>0.85</td>
<td>0.05</td>
<td>3</td>
</tr>
<tr>
<td>MC-Acr-40/3</td>
<td>40</td>
<td>Acropora sp.</td>
<td>0.92</td>
<td>0.10</td>
<td>3</td>
</tr>
<tr>
<td>MC-Mon-38/1</td>
<td>38</td>
<td>M. verrucosa</td>
<td>0.73</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>MC-Mon-38/2</td>
<td>38</td>
<td>M. verrucosa</td>
<td>0.83</td>
<td>0.01</td>
<td>3</td>
</tr>
<tr>
<td>MC-Mon-38/3</td>
<td>38</td>
<td>M. verrucosa</td>
<td>0.88</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>MC-Mon-40/1</td>
<td>40</td>
<td>M. verrucosa</td>
<td>0.93</td>
<td>0.11</td>
<td>3</td>
</tr>
<tr>
<td>MC-Mon-40/2</td>
<td>40</td>
<td>M. verrucosa</td>
<td>0.86</td>
<td>0.13</td>
<td>3</td>
</tr>
<tr>
<td>MC-Mon-40/3</td>
<td>40</td>
<td>M. verrucosa</td>
<td>0.71</td>
<td>0.11</td>
<td>3</td>
</tr>
<tr>
<td>MC-Mon-40/4</td>
<td>40</td>
<td>M. verrucosa</td>
<td>0.85</td>
<td>0.03</td>
<td>3</td>
</tr>
<tr>
<td>MC-Sty-36/1</td>
<td>36</td>
<td>S. pistillata</td>
<td>0.68</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>MC-Sty-36/2</td>
<td>36</td>
<td>S. pistillata</td>
<td>0.7</td>
<td>0.07</td>
<td>3</td>
</tr>
<tr>
<td>MC-Sty-36/3</td>
<td>36</td>
<td>S. pistillata</td>
<td>0.69</td>
<td>0.05</td>
<td>3</td>
</tr>
<tr>
<td>MC-Sty-38/1</td>
<td>38</td>
<td>S. pistillata</td>
<td>0.65</td>
<td>0.03</td>
<td>3</td>
</tr>
<tr>
<td>MC-Sty-38/2</td>
<td>38</td>
<td>S. pistillata</td>
<td>0.84</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>MC-Sty-38/3</td>
<td>38</td>
<td>S. pistillata</td>
<td>0.64</td>
<td>0.12</td>
<td>3</td>
</tr>
<tr>
<td>MC-Sty-40/1</td>
<td>40</td>
<td>S. pistillata</td>
<td>0.85</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>MC-Sty-40/2</td>
<td>40</td>
<td>S. pistillata</td>
<td>0.98</td>
<td>0.06</td>
<td>3</td>
</tr>
<tr>
<td>MC-Sty-40/3</td>
<td>40</td>
<td>S. pistillata</td>
<td>0.62</td>
<td>0.04</td>
<td>3</td>
</tr>
</tbody>
</table>

and cool seasons) to 9 mm·yr⁻¹ (wet and hot seasons) and the average linear extension rate was 5.3 mm·yr⁻¹. The δ¹⁸O and Sr/Ca analyses of the fossil Porites sp. colony from Tahiti along the micro-sampled transect ranged from 3.4 mm·yr⁻¹ (dry
samples from the Maldives than in the cultured samples did not exhibit any specific difference, which cannot be explained by morphological differences, as the species of 0.022, Fig. 3). Such differences can be originated from the different present study; 0.81±0.05‰ (cf. Fig. 2).

However, in the experiments on calcite precipitates, precipitation rate seemed to be controlled by temperature (Tang et al., 2008). Moreover, in the experiments of calcite precipitates, precipitation rate seemed to be controlled by temperature (Tang et al., 2008). Moreover, in the experiments on calcite precipitates, precipitation rate seemed to be controlled by temperature (Tang et al., 2008). Moreover, in the experiments on calcite precipitates, precipitation rate seemed to be controlled by temperature (Tang et al., 2008). Moreover, in the experiments on calcite precipitates, precipitation rate seemed to be controlled by temperature (Tang et al., 2008).

For all genera considered, the $\delta^{44/40}$Ca range was wide and nearly identical, between 0.6 and 0.1‰, and no inter-generic difference in calcium isotopic composition among the three different genera studied here was observed (Fig. 3), in agreement with previous results (Böhm et al., 2006). However, Acropora sp. showed intra-generic differences between different localities. The $\delta^{44/40}$Ca values of Acropora sp. from the Maldives (0.95±0.02‰) were significantly higher than those of cultured Acropora sp. from Monaco (0.78±0.05‰) in the present study; 0.81±0.05‰ in Böhm et al., 2006; ANOVA: p = 0.022, Fig. 3). Such differences can be originated from the different species of Acropora. Even though the calcium isotope ratio is higher in samples from the Maldives than in the cultured Acropora sp., this difference cannot be explained by morphological differences, as the samples did not exhibit any specific morphological difference according to macroscopic observations. The ultrastructure was not investigated in this study.

However, at different salinities, S. pistillata is the only species that shows a distinguishable geochemical signal ($\delta^{44/40}$Ca) between samples subject to same conditions, as discussed below (Section 3.2.3, Fig. 9).

3.2. Environmental parameters

3.2.1. Location across the platform: depositional settings

The average $\delta^{44/40}$Ca values of samples for each genus across the platform transect were not significantly different (Kruskal-Wallis H-test: H(2) = 3.079, p = 0.214; Fig. 6). However, inter-genera variability was smaller in the reef crest compared with that in the lagoon or the forereef (SD: lagoon = 0.09, reef crest = 0.02 and forereef = 0.11).

Physical and chemical factors, e.g. light, water motion and/or suspended sediments, are known to vary across a carbonate platform (Rex et al., 1995; Flügel, 2004). Some of these variations can be recorded in isotopic systems including O and C (e.g. Reynaud-Vaganay et al., 2001). However, in the present study, even though the environmental parameters were not monitored quantitatively, the samples were collected in different locations which correspond to different depositional settings (lagoon, reef crest and forereef) exhibiting different environmental conditions (Chester, 2000). Our results show that, in natural conditions, the calcium isotopic composition of the coral skeleton is immune from the environmental variations such as light, sedimentation rate or hydrodynamism across the platform. Therefore, if other parameters such as temperature or salinity influence the composition of coral skeleton, the isotopic record is likely to preserve signals linked to these parameters.

This finding is important for the fossil record because past environmental depositional conditions are difficult to reconstruct with accuracy, possible lateral variations in calcium isotopes across platforms can be excluded, allowing for trustful correlation of sections.

3.2.2. $\delta^{44/40}$Ca record and sea surface temperature

Paleo-SST (°C) was reconstructed from skeletal δ^{18}O values (‰) and Sr/Ca ratio (mmol·mol$^{-1}$). The equations used were those applied in previous studies, choosing those currently used for the coral genera analyses and/or the settings studied. For δ^{18}O proxy, we used the equation of Gagan et al. (1998):

$$\text{SST} = \left(\delta^{18}\text{O} - 0.146\right) / -0.18$$

![Figure 3](image3.png)

Fig. 3. $\delta^{44/40}$Ca (± 2SEM) data from different genera and different data sets. Stars: fossil corals from Tahiti (this study), filled circles: modern corals from the Maldives (this study), open circles and triangles: corals cultured in monitored conditions in Monaco (respectively: this study and Böhm et al., 2006), cross: modern corals from Galapagos (Böhm et al., 2006). However, $\delta^{44/40}$Ca of Acropora sp. from the Maldives (0.95±0.02‰) was significantly higher than those of cultured Acropora sp. from Monaco (0.78±0.05‰) in the present study; 0.81±0.05‰ in Böhm et al., 2006; ANOVA: p = 0.022, Fig. 3).

![Figure 4](image4.png)

Fig. 4. δ^{18}O (open circles), $\delta^{44/40}$Ca (± 2SEM) (stars) and Sr/Ca (filled circles) records of fossil Porites sp. plotted as the samples according to their position in the coral slab (cf. Fig. 2).

![Figure 5](image5.png)

Fig. 5. $\delta^{44/40}$Ca (± 2SEM) of the fossil coral Porites sp. from Tahiti plotted against the seasonal linear extension rate.
for the Sr/Ca ratio, the equation of Corrège (2006):

$$\text{SST} = (\text{Sr/Ca} - 10.553)/(0.061).$$

(2)

The equation of Böhm et al. (2006) was applied to reconstruct SST using $\delta^{44/40}\text{Ca}$ record:

$$\text{SST} = (\delta^{44/40}\text{Ca} - 0.3)/0.022.$$

(3)

Although the relationship between SST and $\delta^{44/40}\text{Ca}$ is widely studied for marine organisms including foraminifera, brachiopods, bivalves and coralline algae, only few previous studies examined this relationship in coral skeleton (Halicz et al., 1999; Chang et al., 2004; Böhm et al., 2006). One of these studies reported a weak but significant positive trend (+0.02‰/°C, Böhm et al., 2006) although the authors did not recommend the methodology unless the precision was significantly improved or the temperature variations to be reconstructed exceed 5 °C. Since our fossil sample set from Tahiti revealed a pristine skeleton, without evidence of diagenetic cements, and accurate $\delta^{18}\text{O}$ and Sr/Ca records, it was interesting to compare these well-constrained proxies with the $\delta^{44/40}\text{Ca}$ record.

In the present study, the aim was to compare the reliability of different proxies ($\delta^{18}\text{O}$, Sr/Ca and $\delta^{44/40}\text{Ca}$) used to reconstruct SST variability. Thus, we considered only the amplitude and not the absolute SST. Indeed, the amplitude of reconstructed SST$_{\delta^{44/40}\text{Ca}}$ (15.5 °C) was significantly higher than that of SST$_{\delta^{18}\text{O}}$ (3 °C) and SST$_{\text{Sr/Ca}}$ (3 °C), from the SST anomaly (deviation from the mean, Fig. 7). Moreover, SST$_{\delta^{44/40}\text{Ca}}$ did not reveal the seasonal cycle shown by the other proxies (Fig. 7).

The SST$_{\delta^{18}\text{O}}$ and SST$_{\text{Sr/Ca}}$ anomalies (Fig. 7) reconstructed from the fossil Tahiti Porites sp. are consistent with values from previous studies of modern and fossil Tahiti corals (Cahyarini et al., 2008; Asami et al., 2009; Felis et al., 2012). The seasonal SST cycles reconstructed in Tahiti by Asami et al. (2009) have similar amplitudes at 14.2 (3.0 ± 0.3 °C) and 12.4 ka relative to the present (3.3 ± 0.6 °C) as the values recorded today by instrumental measurements between 1982 and 1995 (2.8 ± 0.6 °C) [data derived from Integrated Global Ocean Services System (IGOSS) Products bulletin — http://iridl.ldeo.columbia.edu/SOURCES/IGOSS/]. Asami et al. (2009). Our results however show that SST$_{\delta^{44/40}\text{Ca}}$ did not correlate with the amplitude of the SST reconstructed from $\delta^{18}\text{O}$ and Sr/Ca (Fig. 7). Such large SST$_{\delta^{44/40}\text{Ca}}$ variations (15.5 °C) appear non-realistic, compared with the SST variations derived from $\delta^{18}\text{O}$ (3 °C) and Sr/Ca (3 °C). Furthermore, Tahiti is located in a tropical area characterized by weak (2.8 ± 0.6 °C, 1σ) seasonal average amplitude of SST. The unrealistic SST variations obtained using $\delta^{44/40}\text{Ca}$ records (Eq. (3)) confirm that temperature is not the main parameter controlling calcium isotopic fractionation in coral skeleton.

3.2.3. $\delta^{44/40}\text{Ca}$ record and sea surface salinity

According to the results from Reynaud-Vaganay (2000), S. pistillata showed lighter $\delta^{18}\text{O}$ than other cultured genera (Acropora sp. and M. verrucosa) for salinities of 36 and 40. For $\delta^{13}\text{C}$, S. pistillata showed also lighter values than the other genera. At a salinity of 38, which is the cultured salinity of the parent colonies, these inter-generic differences were minor for $\delta^{13}\text{C}$ and nonexistent for $\delta^{18}\text{O}$. There was no relationship between salinity and $\delta^{44/40}\text{Ca}$ in the cultured corals from Monaco (Fig. 8, ANOVA: p-value = 0.5). Nevertheless, $\delta^{44/40}\text{Ca}$ values of S. pistillata samples plotted against salinity reveal a positive trend which was, however, not statistically significant (p-value = 0.14) (Fig. 9). Moreover, the observed ranges of $\delta^{44/40}\text{Ca}$ values of the S. pistillata colonies increased in parallel with salinity: the range was from 0.68 ± 0.09 to 0.7 ± 0.07 at 36 of salinity and from 0.62 ± 0.04 to 0.98 ± 0.06 at 40 of salinity (Fig. 9). The variability was significantly different at a salinity of 36 compared with 38 or 40, as shown by the F-test (Table 4). Measurement artifacts can be excluded because each measurement was repeated three times and standard errors are smaller at 40, confirming the precision of the measurements (Table 3).

Many studies have used coral $\delta^{18}\text{O}$ in combination with Sr/Ca to reconstruct $\delta^{18}\text{O}_{\text{sw}}$ and SST simultaneously (McCulloch et al., 1994; Gagan et al., 1998; Le Bec et al., 2000; Ren et al., 2002; Felis et al., 2009). However, in a previous study of modern corals from Tahiti (Cahyarini et al., 2008), it was shown that the analytical uncertainties of coral $\delta^{18}\text{O}$ (±0.07‰) equal the amplitude of the seasonal cycle of $\delta^{18}\text{O}_{\text{sw}}$ (±0.08‰); thereof it was not possible to resolve the seasonal SSS in this area. On the other hand, combining coral $\delta^{18}\text{O}$ and Sr/Ca was successfully applied for SSS and SST reconstructions in other tropical locations, e.g. Timor (Cahyarini et al., 2008), where the analytical error of $\delta^{18}\text{O}_{\text{sw}}$ (±0.07‰) was smaller than the mean seasonal cycle of $\delta^{18}\text{O}_{\text{sw}}$ (±0.16‰). To avoid potential analytical bias noted under natural conditions, in the present study we examined the influence of salinity on calcium isotope using cultured corals grown under monitored conditions.
In this study, the coral response to salinity changes was evaluated by measuring physiological responses, e.g., net photosynthesis, respiration, amount of chlorophyll a (Reynaud-Vaganay, 2000) and geochemical parameters: δ18O, δ13C and δ44/40Ca. The results reveal that neither the amount of chlorophyll a, nor respiration and photosynthesis were affected by salinity (Reynaud-Vaganay, 2000). This result is in agreement with a previous study, which has shown that corals may be more tolerant than expected to salinity changes (Muthiga and Szmant, 1987). On the contrary, other studies (Moberg et al., 1997; Porter et al., 1999) showed that the amount of chlorophyll increase and the photosynthesis decrease when salinity reaches 40. However, these studies were conducted on a short time period. During the experimental protocol of the present study, the gradual modification of salinity (+0.5 units per day) did not induce stress to the coral and no abnormal metabolic response was recorded. In the present study, only the effect of hyper-salinity (salinity: 40) could be investigated because the lower salinity level (salinity: 36) was high compared with the values used in previous studies, e.g. 20 (Downs et al., 2009). Furthermore, no gross modifications in the polyp induced by hypo-salinity were recorded.

Nevertheless, the geochemical analyses revealed a noticeable difference in the calcium isotopic composition of S. pistillata compared with the other genera (Figs. 8 and 9). Such difference might be due to the fact that S. pistillata belongs to the Pocilloporidae family whereas Acropora sp. and M. verrucosa belong to another family (Acroporidae). It is worth noting that Ferrier-Pagès et al. (1999) measured a maximal net photosynthesis at 38 of salinity whereas the minimum was reached at 40 of salinity for S. pistillata. In the present study, δ44/40Ca record of S. pistillata only showed the least variability at a salinity of 36. The reproducibility of the measurements showed that this feature is not related to an analytical artifact. Since physiological parameters were not affected by salinity changes (Reynaud-Vaganay, 2000) and the other conditions were kept constant, this special geochemical signature revealed in S. pistillata may be linked to calcium pathway in the polyp, as calcium isotopic fractionation during the calcium pathway across the polyp may vary upon species or family. Differences in calcium isotopic fractionation between families could reveal different biological sensitivities to salinity, but further investigations are needed, using other genera. As discussed by Tambutté et al. (2012) the calcium ion flux from the external seawater across the coral tissue to the site of calcification is controlled by the coral. The ion flux likely follows both a passive paracellular and an active transcellular transport route. The importance of the two routes may depend on physiological conditions, e.g. permeability of the coral tissue. Böhm et al. (2006) suggested that calcium isotope fractionation in scleractinian corals occurs during the transepithelial transport to the calcification site. If this is the case, calcium isotope fractionation may be influenced by the permeability of the coral tissue. However, in the present study, salinity variation appears not significant enough to influence permeability.

A better knowledge of calcification processes is, thus, necessary to better constrain which isotope fractionation processes are affected by salinity variations and how sensitivities to salinity changes vary among different scleractinian species. More species could be cultured at a wider range of salinity. Moreover, additional experiments with different duration or with greater variations in steps of salinity changes can be carried out to evaluate the potential influence of stress on coral growth.

4. Biological processes and calcification

Different environmental parameters were tested in this study: SSS, SST and depositional settings across the platform. None of these revealed any unequivocal relationship with δ44/40Ca. Nevertheless, calcium isotopic fractionation was not always constant, as shown by the variations in the Porites sp. record from Tahiti (Fig. 4) and the variability in the S. pistillata samples grown at different salinities (Fig. 9). Such variations are likely due to intrinsic factors influencing the polyp. Although the processes involved in coral calcification are still under debate, two models reached a consensus. Based on the compartmental model of coral polyp (Tambutté et al., 1996), various studies argued for a confined calcifying space, connected periodically with seawater and invoked Rayleigh fractionation to explain the chemical composition of coral skeleton (Cohen and Holcomb, 2009; Gaetani et al., 2011). Other studies demonstrated, however, that this calcicoblastic space is not always constant, as shown by the variations in the Porites sp. record from Tahiti (Fig. 4) and the variability in the S. pistillata samples grown at different salinities (Fig. 9). Such variations are likely due to intrinsic factors influencing the polyp. Although the processes involved in coral calcification are still under debate, two models reached a consensus. Based on the compartmental model of coral polyp (Tambutté et al., 1996), various studies argued for a confined calcifying space, connected periodically with seawater and invoked Rayleigh fractionation to explain the chemical composition of coral skeleton (Cohen and Holcomb, 2009; Gaetani et al., 2011). Other studies demonstrated, however, that this calcicoblastic space is not always constant.
composition in coral skeleton indicate that calcium is not influenced by Rayleigh fractionation (Tauber et al., 2010 and pers. comm.) and tended to favor the "isolated compartment" theory.

In the present study, the δ44/40Ca record of S. pistillata was increasingly variable between specimens when salinity increases. Such variability argues for a strong influence of the polyp on fractionation during the calcification processes because the colonies grew under identical external conditions. S. pistillata seems to be more sensitive to salinity than other genera analyzed and could adapt to these variations without influence on vital processes (e.g. respiration).

To better constrain the causes of the calcium isotope fractionation in coral skeleton, investigations on living corals are needed to locate the site of fractionation, and the calcium pathway in the polyp and to evaluate these processes. New methods such as the labeling techniques recently used to locate calcite pathways in corals (Tambutte et al., 2012) combined with measurement of isotope ratios can be used for this purpose.

5. Conclusion

Coral skeleton composition is widely used for environmental reconstruction and represents a privileged chemical proxy for temperature. However, unlike other biogenic component such as foraminifera, 44/40Ca signature in coral skeleton was not investigated systematically. By the diversity of parameters and species investigated, this study contributes to improve significantly current knowledge. The main result shows that 44/40Ca of coral skeleton is immune from any environmental influence whichever the species and the location. However, the variability between colonies cultured under identical conditions increases with salinity for S. pistillata. This behavior attests for the importance of biological influences on isotopic fractionation during the calcification process. Once calcium isotopic fractionation behavior on coral is constrained using in situ measurements, the signal can be trustfully used to reconstruct seawater composition and calcium budget in the ancient ocean. Therefore, additional studies are crucial to better evaluate the contribution of biological processes in calcium isotopic composition of coral skeleton. If the biological influence can be quantified and proves to be a constant factor, the latter can be discriminated and the calcium isotope fractionation can be applied for reconstructions.

Acknowledgments

This research used samples provided by IODP, drilled on a mission-specific platform expedition conducted by the European Consortium for Ocean Research Drilling (ECOR) Science Operator (ESO). We would like to thank A. Kolevica (GEOMAR, Kiel, Germany) for technical support during calcium isotope measurements and B. Grobéty (University of Fribourg, Switzerland) for XRD analyses. We acknowledge S. Rigaudo and M. Grett (University of Geneva, Switzerland) for logistic help in the field. This research was part of the European Science Foundation (ESF) EUROCORES Program EuroMARC supported by the Swiss National Science Foundation (SNF) through grants 20MA21-115944, and 200020_140618 and by the Deutsche Forschungsgemeinschaft (DFG) through grant FE 615/2-1. This work is a contribution to the "European Project on Ocean Acidification" (EPOCA) which received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 211384. This manuscript was greatly improved by comments and suggestions from two anonymous reviewers.

References

