An Ecosystem Models Response to North Atlantic Oscillation like forcing

Martin Visbeck (1), <u>Marina Levy (2)</u>, Naomi Naik and Jessie Cherry (1)

(1) Department of Earth and Environmental Sciences Lamont-Doherty Earth Observatory Columbia University New York, USA (2) LODYC / IPSL Université Pierre et Marie Curie Paris, FRANCE

with contributions from Gerd Krahman

An Ecosystem Models Response to North Atlantic Oscillation like wind forcing

There is significant variability in the ocean on interannual timescales.

Does it impact biogeochemical cycles and how ?

Outline of my presentation

- NAO
- Physical model
- Biogeochemical model

Lamont Ocean Model annual temperature anomal (0-400m depth) when forced with NCEP/NCAR monthly wind anomalies.

The North Atlantic Oscillation : largest mode of Atlantic climate variability

Changes in the Subpolar to Subtropical Atmospheric Pressure Difference lead to:

- Changes in strength and position of the westerly winds (storm tracks)
- Phase can be described by a simple pressure based index

North Allastic Oscillation

The positive NAO index phase

- The positive NAO index phase shows a stronger than usual subtropical high pressure center and a deep than normal Icelanding low
- The increased pressure difference results in more and stronger winter storms crossing the Atlantic Ocean on a more northerly track
- This results in warm and wet winters in Europe and in cold and dry winters in northern Canada and Greenland
- The eastern US experiences mild and wet winter conditions

North Allastie Oscillation

The North Atlantic Oscillation Index

Ocean's response to the NAO: observations

- Wind anomaly pattern
- Sea surface temperature
- Primary production
- Zooplankton distribution
- Cod growth

Impacts of the North Atlantic Oscillation: Changes in wind stress and wind speed

Impacts of the North Atlantic Oscillation: Changes in Sea Surface Temperature

- Three banded structure : cooling in the subpolar, warming in the Gulf stream region, cooling in the subtropics
- Direct response to wind anomaly
- Ocean advection along Gulf stream extension

Impacts of the North Atlantic Oscillation: Changes in Primary production

Correlations at station BATS NAO/SST : + 0.4 NAO/MLD : -0.32 NAO/ PP : -0.33

From Bates (2001)

Impacts of the North Atlantic Oscillation: Changes in Zooplankton

Fromentin and Planque (1998)

High NAO : warmer temperature, enhanced mixing, delayed spring bloom -> less C. Finmarchicus more C. helgolandicus

Impacts of the North Atlantic Oscillation: Changes in Cod growth

Atlantic Cod off Labrador and off Newfoundland

High NAO : low temperature, lots of ice, low growth

From K. Drinkwater, AGU Chapman Conference on NAO

- LOAM ocean model
- NAO wind forcing with 8 years period
- NPZD ecosystem model
- Initialized with Levitus
- 20 years spin-up
- Gent and McWilliams (1990) for lateral mixing
- TVD advection scheme

Summary and Conclusions

We have shown that the NAO impacts on PP through different processes :

- In the subpolar gyre: NAO+ is associated with stronger winds, increased MLD which delays and shorten the bloom
- In the subtropical gyre : NAO+ is associated weaker winds, with decreased MLD which decreases the nutrient inputs and PP
- In the interboundary region : NAO+ is associated with increased nutrient inputs, ML not too deep, and PP is increased.
- Nutrients in quadrature with the NAO originate from the gyre recirculation of the extra nutrients from the subpolar gyre

in agreement with Dutkiewicz et al. (2001)

Summary and Conclusions

Primary production pattern :

Oceans Model's response to NAO forcing: Dipole or Monopole ?

What causes the shift from a dipole to monopole SST response ?

Visbeck and Krahmann argue that it is the advection of temperature anomalies by the mean current.

Does the PP response pattern depends on the frequency of the forcing and how ?

o year

Monopole