Diel variations in the photosynthetic parameters of *Prochlorococcus sp.*

Marcel Babin, Flavienne Bruyant et al.

1. Diel variations in both α^B and P^B_{max} have been observed in numerous studies over the last 3 decades, and variation patterns have been observed.

P^B_{max} peaks in the morning (Harding et al. 1981)

P^B_{max} peaks in the middle of the night

(Rivkin & Putt 1987)

P^B_{max} peaks in the middle of the day

(Vandevelde et al. 1989)

2. α^B diel changes often parallel those of P^B_{max} , which suggests that photoacclimation is not or not only the cause

- Harding et al. (1981) observed that the diel changes in photosynthetic parameters are damped when approaching the stationary (non-dividing) phase in batch culture
- ⇒ The cell cycle may be a cause

- 4. Putt and Prézelin (1988) found that batch cultures of non-dividing diatoms exhibit significant diel variations in P^B_{max}
- ⇒ Light may be a cause

- 5. Rivkin and Putt (1987) noticed that P^{B}_{max} peaks by day when midday irradiance is low to moderate, and by night when midday irradiance is high
- ⇒ Both the cell cycle and light may be the causes

Question

What are the respective roles of light and the cell cycle in the diel variations of photosynthetic parameters?

Cell division within natural *Prochlorococcus sp.* populations is synchronous

In the Equatorial Pacific, Prochlorococcus cells divides once a day around sunset

(Vaulot et al. 1995)

Prochlorococcus sp. does show diel changes in photosynthetic parameters in nature

Subtropical Pacific Behrenfeld et al. (1998)

Methods: Experimental plan

- 12:12 light cycle
- Maximum PAR: 970 µmol photons m⁻² s⁻¹
- 2 Turbidostat

Methods: Experimental setup

- 10 L
- Acclimated during 2 weeks
- Axenic
- Duplicate

Described in Bruyant et al. (2001)

Methods: Measured variables

- \blacksquare F_{o} , F_{m} , σ_{PS2}
- $\blacksquare \alpha^{B}, P^{B}_{max}$
- $\blacksquare a(\lambda)$
- Pigments
- Cell count (flow cytometry)
- RNA transcription (psbA, pcbA, rbcL)

Methods: Sampling strategy

- Turbidostat 1: sampling every 2nd hour for cell counts, pigments, absorption, PvsE, and variable fluorescence
- Turbidostat 2: sampling every 4th hour for cell counts, variable fluorescence and RNA transcription
- Duration of the experiment : 4 days

Results

⇒ Cell division mostly occurs between 20:00 and 00:00

Results

Mean absorption coefficient [m² (mg chl)⁻¹]

$$\alpha^B = \overline{a} * \phi_{C_{max}}$$

Maximum quantum yield of carbon fixation [mol C (mol photons)-1]

Is \overline{a} * a cause of α^{B} diel variations?

$$\alpha^B = \overline{a} * \phi_{Cmax}$$

Is \overline{a} * a cause of α^B diel variations? \Rightarrow No!

$$\alpha^B = \overline{a} * \phi_{Cmax}$$

Is $\phi_{C max}$ a cause of α^{B} diel variations ?

Is $\phi_{C max}$ a cause of ES diel variations?

of RC perfebel (see call) so rption crosses be considered from (en objection per e-)

$$\phi_C^{max} = \frac{n_{PS2} \sigma_{PS2}}{\overline{a}*} \quad \frac{F_v / F_m}{0.65} \quad \phi_e \quad \frac{1}{PQ}$$

Fraction of protogyat Refix quotient (O2 per C)

How much of absorbed light is actionally arget dach separation in RC2

What fraction is used to evolved oxygen

$$\phi_C^{max} = \begin{bmatrix} n_{PS2} & \sigma_{PS2} \\ \overline{a} * \end{bmatrix} \begin{bmatrix} F_v / F_m \\ 0.65 \end{bmatrix} \phi_e \begin{bmatrix} 1 \\ PQ \end{bmatrix}$$

How many RC can Huse this dig barbon is réduced per oxygen

There are several energy leaks between light absorption and C fixation!

Results: α^B variations

$$\phi_C^{max} = \frac{n_{PS2} \sigma_{PS2}}{\overline{a}*} \frac{F_v/F_m}{0.65} \phi_e \frac{1}{PQ}$$

Does changes in this ratio occur due to zeaxanthin?

Claustre et al. (2002)

$$\phi_C^{max} = \frac{n_{PS2} \sigma_{PS2}}{\overline{a}*} \frac{F_v / F_m}{0.65} \phi_e \frac{1}{PQ}$$

Does changes in this ratio occur due to zeaxanthin?

Not really!

$$\phi_C^{max} = \frac{n_{PS2} \sigma_{PS2}}{\overline{a}*} \frac{F_v / F_m}{0.65} \phi_e \frac{1}{PQ}$$

Does changes in this ratio occur due to changes in σ_{PS2} ?

Results

$$\phi_C^{max} = \frac{n_{PS2} \sigma_{PS2}}{\overline{a}*} \frac{F_v / F_m}{0.65} \phi_e \frac{1}{PQ}$$

Does changes in this ratio occur due to changes in σ_{PS2} ?

⇒ Unclear !

$$\phi_C^{max} = \frac{n_{PS2} \sigma_{PS2}}{\overline{a}*} \begin{bmatrix} F_v / F_m \\ 0.65 \end{bmatrix} \phi_e \frac{1}{PQ}$$

Is this ratio responsible for ϕ_{Cmax} variations?

Results

$$\phi_C^{max} = \frac{n_{PS2} \sigma_{PS2}}{\overline{a}^*} \begin{bmatrix} F_v / F_m \\ 0.65 \end{bmatrix} \phi_e \frac{1}{PQ}$$

Is this ratio responsible for ϕ_{Cmax} variations?

⇒ Not much!

$$\phi_C^{max} = \frac{n_{PS2} \sigma_{PS2}}{\overline{a}*} \frac{F_v / F_m}{0.65} \phi_e \frac{1}{PQ}$$

We made no measurement that allows us to assess the impact of this term

$$\phi_C^{max} = \frac{n_{PS2} \sigma_{PS2}}{\overline{a}*} \frac{F_v / F_m}{0.65} \phi_e \frac{1}{PQ}$$

We expect this term to equal 1 for this experiment

The early drop in α^B , ϕ_{Cmax} , F_o and F_m seems to be due to non-photochemical quenching (e.g. to light!) of unknown origin

What about the recovery?

Results

Model modified from Neale (1987) with:

- K_r determined in the dark, around noon
- K_q determined from model fitting on the morning data

Cell division is responsible for slow recovery?

Interesting observations (Garczarek et al. 2001):

Reaction centre protein (D1)

Major light-harvesting complex of PS2

Results: PB_{max} variations

 P^{cell}_{max} show mostly the same variation pattern as P^{B}_{max} , so P^{B}_{max} variations are not due to changes in chl per cell

Results: P^B_{max} variations

Light-dependent activation of Rubisco and/or synthesis of Rubisco?

Results: PB_{max} variations

Transcription for the large subunit of Rubisco

Results: P_{max} variations

Results: PB_{max} variations

Transcription for the large subunit of Rubisco

Our initial question:

What are the respective roles of light and the cell cycle in the diel variations of photosynthetic parameters?

More specifically:

What caused diel variations in α^{B} during this experiment ?

- ⇒ Probably, light! Energy dissipation related to non-photochemical quenching
- ⇒ May be, cell division: it may induce delay in recovery from quenching, and then contribute through protein synthesis after cell division

More specifically:

What caused diel variations in P^{B}_{max} during this experiment ?

- ⇒ Unclear : Rubisco synthesis and light dependent increase/decrease in activity ?
- ⇒ Unclear : alternative sinks for the products of light reactions ?
- ⇒ May be, cell division: it may also induce a decrease in Rubisco per cell, followed by an increase through sustained protein synthesis after cell division

A hypothesis:

Rivkin and Putt (1987) noticed that P^{B}_{max} peaks by day when midday irradiance is low to moderate, and by night when midday irradiance is high:

It may be that the light effect dominates under high irradiance, which would lead to maxima in photosynthetic parameters during the night (more or less as during this experiment),

and that a possible cell division effect dominates under low to moderate irradiance, which would lead to maxima by day (as often reported).

What may be the impact on primary production ?

