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Recall

Turbulence is generated / sustained by

Driving forces: Wind effects, shear stress t, u*, = (t/p,,)1/2; 1=Cd.p,.U;,.|U;|
Buoyancy flux (losses of buoyancy, ocean cooling) Jb or Bo (m2.s-3)

Surface effects (waves, langmuir cells)

Internal waves, submesoscale and mesoscale instabilities

Concern

Ocean depth mixed layer Hmd, few meters to 2000 m; dp <0.01 kg/m3 one among many
criteria

Special attention when Hmd> Ze

Mixing layer depth (active) against Mixed layer depth ?

Questions

Cycling time of water parcel? Tconv =H/w; w? u*?
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1st-2nd March 2001, 13 casts 2 days

40°N, 18°W,

NE Atlantic,

Site | Pomme 1 Leg 2
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Buoyancy Flux (1E-07 m2s-3), Site 1 Pomme 1 Leg 2
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0 Pomme 11leg 2 Site 1 Stations 1081 to 1093

26.75 26.8 26.85 26.9 26.95 27 27.05
200 Density excess (kg/m3) Shift: 0.025 kg/m3

Rau — depth profiles lagged 0.02 kg/m3

Depth of euphotic layer: ca 60-70 m
Rains after 1082 ? + Low Jb losses ———» Stratification
Turbulence (convection) limited to 40 m upper layer
Doubling Biomass for 2 days

Biomass did not change in 40-180 m layer

Start (1081 cast): 180 m mixed layer, Fluo Homogeneous

Production was limited by turbulence for 1081-1082 casts

C — depth profiles lagged 0.05

Fluo Chla (rel units), Site 1 Pomme 1 Leg 2
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Increasing C for 2 days in the S0 m upper layer (mixing layer)
u.C. Hmg > Kz. 0C/oz Kz < (u. Hmg . 6z). C/ oC

0.5*50*20*1
Kz < 500 m?d-!
But same kind of calculation inside the mixing layer Hmg

|-Hmg

No gradient in C, same p
C/8C>10 on 25m (Hmg and6z) Kmg>0.5 *25*25*10

Kmg> 3125 m?d’!

However K formulation non relevant in mixing layer
(Ex Hmg > 50 m; Kmg > 12500 m2.d-: not realistic,
upper limit: 2500 m2.d ; towards 3D )



C — profiles are very sensitive to Hmg and Kmg or W
What about time fluctuation ?

Jb time scale, u* time scale?

Jb same dimension as u*3/Hmd and epsilon m2s-3
Epsilon :coefficient of eddy Kinetic energy dissipation
involved in mixing length estimation
also in size estimation of the largest eddy

Lo = (¢ V2N -¥2) Ozmidov length; N2=-g/p dp/dz



(m2.s-3) ou (w.kg-1)

¢ Surface Buoyancy flux ; >0 if
stratifying

Jb=—_& _ a.Onet+f—8
po.Cp < ﬂpoL

S.Oe  (-u*3/Hmd)

: \
Qnet Net surface fluw of heat towards Ocean
Qe Heat losses by zvaporation as estimate of the

amount water losses (change in S)

o and B thermal and haline expansion coefficient of
seawater

¢ How do Jb, Qe, Qnet vary?

¢ Example from Pomme
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Qnet

' Daily flux
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Strong variations of Jb along a day and between successive days

10-7 m2s-3 Pomme Buoyancy flux (*1e07 m2.s-3) and ustar3/100
5

! Jb daily aver.
3
2 Jb 10 min.
1

Jb
0r u*3/100
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Mixed layer, mixing layer, remnant layer

DSR 1995
1526 K. E. Braincerd and M. C. Gregg
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Fig. 5. Diagram showing depth zones in a typical diurnal mixed layer cyele.
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Fig. 6. A one-day evcle from PATCHEX. The vertical dashed lines mark the times of profiles

shown in Fig. 7. Panel a. Surface buoyaney ux Ji,. Panel b, Contours of 6. hour averages in 2 m

vertical bins, Contour interval 0.02°C. Heavy black line s the top of the seasonal thermocline.
Pancl ¢, Contours of log ¢ hour inverages in 2 m vertical bins. Contour interval 0.5



K. E. Brainerd and M. C. Gregg
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Fig. 3, Summuany of turbulent dissipation rates on PATCHEX. Pancl a. Surface buoyancy Hux

I\, Shaded parts mark periods when convection is being forced (cooling). Panel b. Shaded
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Fig. 7. Profiles of ¢ # and o, taken ot four stages of the daily eycle shown in Fig. 6. The shading is
£ estimated in (L5 m bins: # and o, have been processed with a 0.8 m triangular filter. Horizontal
lings in the side panels mark values returned by the mixed layer depth criteria; density difference
criteria on the left hand panels. density gradient eriteria on the right. Pancla. Drop 4835, 2353 LT,
16 October 1986, during convective deepening phase. Panel b, Drop 4850; 0439 LT, 17 October
1986, during convective equilibrium phase. Panel ¢. Drop 4863: 1036 LT, 17 October 1986: start of
growth of diurnal thermochine. Panel d. Drop 48715 1415 LT, 17 Ocrober 1986 diurnal thermocline
has become guite strong.

series of profiles from PATCHEX. Figure 7 shows profiles taken at four times in the daily
cycle shown in Fig. 6. The profile in panel a was taken during convective deepening. From
.1t appears that convection was active down to about .26 MPa. The depth range between
0.26 and 0.28 MPa is the entrainment zone, within which ¢ decreases rapidly, and o,
transitions between the nearly unstratificd mixing layer above and the stratified remnant
layer below. The density and temperature profiles show many overturns within the mixing
layer. but the mean has nearly neutral stability: within the entrainment zone o, shows a
small increase of about 0.003 kg m *. This increase is of the same magnitude as the
overturns seen above it. and none of the density step depth criteria are able to detect it. A
density gradient of (Agy,) = 0.005 kg m ' triggers on an overturn within the mixing layer;
larger values of (4o,), find the seasonal thermocline. Panel b of Fig. 7 shows a profile
taken during the convective equilibrium phase. when convection extends down to the

1532 K. E. Bramerd and M. U, Gregg,
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Fig. 9. Profiles of . 8 und o, from four consecutive drops during convective deepening on 16

Octaber, from PATCHEX. The shaded line is ¢, estimated in (1.5 m bins: # and @, have been

processed with o (L8 m triangular filter. Horizontal lines in the side panels mark values returned by

the muxed layer depth eriteria; density difference eriteria on the left hand panels, density gradient

eriteria on the nght. Pancl a. Drop 48312 2247 LT. Panel b. Drop 4832; 2304 LT. Panel ¢. Drop
4R833: 2321 LT, Panel d. Drop 4834 2337 LT

distinction between the mixing and mixed layers. Judging the mixing layer depth from &, it
can be seen that the mixing depth is highly variable from one night to the next, reaching
maximum depths between 0.2 and (.7 MPa, and only occasionally extends down to the
seasonal thermocline. the top of which is near 1.7 MPa: the depth of the top of the seasonal
thermocline is set only by occasional deep mixed layer events. The strong day to day
variability in mixing layer depth appears to be related to the strong remnant layer
stratification (Fig. 11) that usually prevents convection from penetrating to the seasonal
thermocline at night.

In order to show the overall performance of the two types of criteria, Fig. 12 compares
the range of mixed layer depth definitions with the observed overturning for one typical
day. Asin the PATCHEX case (Fig. 8). the density difference criteria (Aa,,)- = 0.005 and
0.01 follow the daily mixing cycle reasonably well, while none of the other criteria do.

In this cruise the surface forcing was dominated by squalls, which frequently included
very heavy rainfull. This emphasizes the possible importance of salinity to mixed layers;
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kig. 15, Profile tfrom the Tropic Heat Cruise: ¢ (thin solid line). o, (heavy solid line). salinity
(dashed line). and ¢ (shaded). # and o, are well-mixed down to 1.2 MPa, although strong
turbulence extends past (.8 MPa.



Brainerd and Gregg , DSR Sept. 1995:

mixed layer rather shallow (60 to 100 meters)
observations of L, epsilon
Wmg ~= 2 to 8 cm/s; Tconv ca 30 min

Close to estimation by Denman L&0 1983 from scaling
arguments

Now observation by Lagriangian 3D floats,

Deep mixed layer

Steffen and d’Asaro JPO Feb 2002
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F1G. 1. Two CTD casts from R/V Knorr Cruise 147 (data courtesy of R. Pickart): from station
9 (solid lines), 12 Feb 1997 (at DLF deployment time and location), and station 119 (dashed
lines), 10 Mar 1997 (at DLF deployment location and mission end time). The characteristic
stratification for this region is visible in both stations: the relatively cold, fresh mixed layer
overlies warmer, saltier water. During the month between these two casts, the mixed layer deep-
ened from about 530 to 1320 db. During this deepening the salt has been mixed, but overall salt
content has remained essentially constant in the upper 1300 db.
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FiG. 16. Comparison of observed and fit rms vertical velocity. Rms vertical velocity (shaded)
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3 of Table 3. Total buoyancy flux (dotted) and wind (dashed) are each scaled by best linear

1 coefficients; small bars show scaling for meteorological variables.
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MODELS ?



d’Asaro , Winters and Lien JGR May 2002
Lagrangian simulation in a 2D model (x, z, t)
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37, 1/ REVIEWS OF GEOPHYSICS

Figure 19. A schematic representation of the evolution of a
population of plumes under mtational control sinking in to a
homogeneous fluid of depth /i, at a latitude where the Coriolis
parameter is f, trigeered by buovancy loss %, If the fluid is
sufficiently deep (as drawn here) the plumes that make up the
convective laver will come under rotational control on the scale
[

ot

then not possible to construct scales for the depth,

. F afl 1 'm mt I .

Marshall and Schott: OPE

bwbmmt:*

The subscript “norot” indicate
adopted in the absence of rot
implicit in the flux law equati

3.3.1.2.  Scale constraine
If & 1 sufficiently large then ti
come under geostrophic contr
depth /. The transition fi«
plumes to quasi-2-D, rotatio
(represented schematically in
approaches ' at which poi
equation (11), the following sc
et al., 1991):

]~ = (9
U~ Upet = (
bwbmt:(

where the subscript “rot” (for
to denote the scales at whi
important. Golvtsin [1980] app
towrite down the scales (13} F
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it e
be formed from %, and r (a more detailed account s

given by Jones and Marshall [1993] and Maxworthy and
Nanmousa [1994]).

P - o= T U DN | SIS

[~ (Bt (11a)

u o~ w~ (B (11b)

b~ (Boft)V? (11¢)

where ! 18 a measure of the scale of the convective
elements.

3.3.1.1. Scale constrained by the depth: 1If it s

the depth /2 that ultimately hmits the scale of the cells
then putting / = A i {11a), the following scaling s
suggested [Deardorff, 1985], independent of rotation:

Z cid zmmt - h (123')

U~ ummt - {%Uh)iﬂ (12]3)

At these scales the plume Rossby number 1s unity:

u W rot 1

= :ﬁwﬂro’c:

It should be noted that the foregoing scales are inde-
pendent of assumptions concerning eddy viscosity and
ditfusivity, provided that they are sufficiently small; they
are the velocity, space, and buoyancy scales that can be
constructed from the “external” parameters %, f, and
h. However, the constants of proportionality in {12} and
(13) will be dependent on viscous/diffusive processes
and can be determined experimentally from laboratory
and numerical experiments {see section 3.5.1 and equa-
tion (18)).

Helfrich [1994] has vividly illustrated possible rota-
tional constraints on convective plumes in the labora-
tory. Figure 20 shows a sequence of photographs from
an experiment in which a salt solution, dyed for flow

TABLE 3. Velocity, Buoyancy, and Space Scaling in the Open-Ocean Deep Convection Regime

Heat Fh Heat Fho Heat Fho Heat Fho
= 100 Wm~2 = SO0 Wm2 = 1000 W m~2 - 1500 Wm~2
Buoyancy Flux Buoyancy Fiux Buoyancy Flux ncy Flux
Sealing =500 X 107" m?5~* =22y X107 m?s? =500 X 107 m?5? =728 X 10r-7ms?
[ ot KM (B 7)1 0.22 0.47 0.71 0.85
s IR (T of)** 0.0 0.05 007 009
o R (% )2 0.04 0.08 0.09 012
Ro* Ty 011 0.24 (.35 043
[, km VRo* 0.67 0.97 1.19 1.31

=L

Hete h = 2 km and f = 107* 571,



From the surface to the bottom of the mixed layer under strong forcing , we succesively have
- thin (?) Surface Boundary Layer
(few meters to 50 meters) strongly variable in time and depth
- Uprigth convection
- Rotational convection

- Remant layer

Was all ?

Haine and Marshall JPO 1997, 3d model constant buoyancy forcing,

take into account the horizontal gradient of density (weak but sufficient to hor;gradient of U)
- Gravitational instability (« upright » convection)

- Symmetric instabilty convection with non zero vertical gradient but zero potential vorticity

- further: barocilic instability; time sacle of these processes are given.

Result in intermittence of turbulence and trajectories of parcel water!



(a) Temperature and flow

0 Case of symetric instabilty
E gl Trajectories are slanting along isopycnals
§ 600 F Residual (weak ) stratification appears
800
1000

Time of occurrence of this instability?
Dependent of ({/f- 1/Ri)f2<0  10/T?
C= f-ou/oy

Ri Richardson number N?f2/M*
NZ=-g/p. 8p/dz ; M?*=| -g/p. 5p/dy|

(b) PVand flow
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Cycling time in mixing layer (depth is strongly variable in time) more
than 1 cycle per day wathever the mixing layer depth

In the mixing layer each cell of phytoplancton receives the same
irradiation for 2, 3, 4 days ( Is an relevant hypothesis ?)

What are the influence of the intermittence of ligth on growth cell?

We observed in February 1997 inside a 200km diameter anticyclonic
eddy at 49°N 45 °© W (Caniaux, et al, GRL 2001) homogoneous
concentration of phytoplancton down to 750 m !!!

Qe —-700 w.m-2 for 15 days ; SST 13 °C

Integrated biomass was circa 45 mg.m-2 Chla , in Winter with low Chla
concentration

Production inside thick mixed layer could be significative . Why?
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