Biophysical and optical determinations of light absorption by phytoplankton *in vivo* & *in situ*.

David J. Suggett¹, Hugh L. MacIntyre², C. Mark Moore³ & Richard J. Geider¹

¹ University of Essex, Colchester, UK.
² Dauphin Island Sea Laboratory, Alabama, USA.
³ Southampton Oceanography Centre, Southampton, UK.

What is the importance of light absorption to algal (PSII) productivity?

• Algae are frequently 'light limited' (...rate of absorption determines photosynthesis).

• High resolution biophysical (fluorometric) estimates of PSII productivity are limited by our ability to quantify the rate of light absorption.

Bio-optical

Bio-physical

wetlabs.com

Outline

(1) Reconciliation of optical- and biophysical-based determinations of light absorption by PSII.

(2) Towards understanding the variability of biophysical-based estimates of light absorption by PSII in situ.

Bio-optical: All potential light absorption by pigments associated with PSII & PSI (expressed relative to the predominant pigment, chlorophyll *a*)

Bio-physical: Effective absorption by pigments which deliver photons to PSII photochemistry (expressed relative to the no. of functional RCIIs)

Bio-physical: Effective absorption by pigments which deliver photons to PSII photochemistry (expressed relative to the no. of functional RCIIs)

• Changes in PSII light harvesting pigments and RCIIs (acclimation)

Bio-physical: Effective absorption by pigments which deliver photons to PSII photochemistry (expressed relative to the no. of functional RCIIs)

- Changes in PSII light harvesting pigments and RCIIs (acclimation)
- Non-photochemical quenching of ex. energy, state transition (ambient light)

Bio-physical: Effective absorption by pigments which deliver photons to PSII photochemistry (expressed relative to the no. of functional RCIIs)

- Coincidental changes in σ_{PSI} : state transitions
- Cyclic electron flow around PSI: pigments, RCIs or state transition?

To what extent can we reconcile biophysical and optical absorption estimates for mechanistic PSII productivity models?

- 11 spp. from 8 algal divisions grown under 18 & 300 mmol photons $m^{-2} s^{-1}$
- Natural samples (Celtic & Irish Seas, SW England)

1. Biophysical absorption by PSII: FRR fluorescence

1. Biophysical absorption by PSII: FRR fluorescence

 σ_{PSII}

	(m ² mol RCII ⁻¹ • 10 ⁻⁴)
Aureococcus anophagefferens	874 - 671
Chaetoceros muelleri	211 - 284
Dunaliella tertiolecta	172 - 208
Emiliania huxleyi	298 - 349
Prorocentrum minimum	361 - 547
Pycnococcus provasolii	758 - 606
Thalassiosira weissflogii	157 - 207
Rhodomonas salina	246 - 223
Storeatula major	211 - 175
Synechococcus spp. 1479/9	92 - 141
Synechococcus spp. WH7803	162 - 226

Max. difference between spp.	9.5
Max. difference between growth PPFDs	1.5

1. Biophysical absorption by PSII: n_{PSII}

 $n_{PSII} = mol RCII (mol chla)^{-1}$

O₂ flash yield technique (Falkowski *et al.* 1981: Plant Physiol. 68)

LED system (Suggett *et al.* 2003: Eur. J. Phycology 38)

Low sensitivity of O_2 electrode requires highly concentrated algal solution (> 0.75 g m⁻³ chl *a*)

1. Biophysical absorption by PSII: n_{PSII}

	σ _{PSII} (m² mol RCII ⁻¹ • 10 ⁻⁴)	1/n_{PSII} (mol chl <i>a</i> mol RCII ⁻¹)
Aureococcus anophagefferens	874 - 671	951 - 724
Chaetoceros muelleri	211 - 284	591 - 521
Dunaliella tertiolecta	172 - 208	742 - 538
Emiliania huxleyi	298 - 349	650 - 538
Prorocentrum minimum	361 - 547	535 - 431
Pycnococcus provasolii	758 - 606	938 - 666
Thalassiosira weissflogii	157 - 207	584 - 556
Rhodomonas salina	246 - 223	510 - 472
Storeatula major	211 - 175	520 - 445
Synechococcus spp. 1479/9	92 - 141	279 - 241
Synechococcus spp. WH7803	162 - 226	294 - 221
Max. difference between spp. Max. difference between growth PF	9.5 PFDs 1.5	3.4 1.4

1. Biophysical absorption by PSII: *a*^{chl}_{PSII}

	σ _{PSII} (m² mol RCII ⁻¹ • 10 ⁻⁴)	1/n_{PSII} (mol chl <i>a</i> mol RCII ⁻¹)
Aureococcus anophagefferens	874 - 671	951 - 724
Chaetoceros muelleri	211 - 284	591 - 521
Dunaliella tertiolecta	172 - 208	742 - 538
Emiliania huxleyi	298 - 349	650 - 538
Prorocentrum minimum	361 - 547	535 - 431
Pycnococcus provasolii	758 - 606	938 - 666
Thalassiosira weissflogii	157 - 207	584 - 556
Rhodomonas salina	246 - 223	510 - 472
Storeatula major	211 - 175	520 - 445
Synechococcus spp. 1479/9	92 - 141	279 - 241
Synechococcus spp. WH7803	162 - 226	294 - 221

 a^{chl}_{PSII} (m² mg chl a^{1}) =

$$\sigma_{PSII} \bullet n_{PSII} = (0.003 - 0.014)$$

1. Optical absorption by PSII: *a*^{chl}_{PSII}

1. Optical absorption by PSII: *a*^{chl}_{PSII}

1. Optical absorption by PSII: \mathcal{A}^{chl}_{PSII}

2. Proportion of light absorbed by 'photochemically active' pigments

1. Optical absorption by PSII: *a*^{chl}_{PSII}

3. Proportion of light absorbed by only PSII

 a^{chl}_{PSII} (m² mg chl a^{-1}) = 0.002 – 0.013

1. Biophysical & Optical *a*^{chl}_{PSII} compared - laboratory

y = 1.039x (r² = 0.874, n = 22, p<0.001)

1. Biophysical & Optical *a*^{chl}_{PSII} compared - field

JR98 Ce	eltic &	Irish	Seas,	August	2003
---------	---------	-------	-------	--------	------

Variable	Range	Units
[chl <i>a</i>]	0.34 - 2.38	mg m ⁻³
σ_{PSII}	363 - 690	m² mol RCII ⁻¹ 10 ⁻⁴
1/n _{PSII}	456 - 746	mol chl <i>a</i> (mol RCII) ⁻¹
a ^{chl} (FRR <i>ex</i>)	0.009 – 0.019	m² (mg chl <i>a</i>)⁻¹
% <i>a</i> by PP	55.4 - 86.9	%
% <i>a</i> by PSII	33.2 – 47.5	%

1. Biophysical & Optical *a*^{chl}_{PSII} compared - field

y = 1.039x (r² = 0.874, n = 22, p<0.001)

1. Biophysical & Optical *a*^{chl}_{PSII} compared - field

y = 1.039x (r² = 0.874, n = 22, p<0.001)

y = 1.004x (r² = 0.324, n = 20, p<0.01)

1. Biophysical & Optical *a*^{chl}_{PSII} compared - conclusions

• Biophysical and optical approaches yield comparable rates of light absorption (*provided* several variables are measured)...more confidence in biophysical measurements.

 \bullet Assumed values for n_{PSII} or proportion of light absorbed by PSII are a significant source of error.

Factor of difference using assumed relative to measured

			Eukaryotes	Cyanophytes
assume	[2.0 or 3.3 · 10 ⁻³] • [(<i>F</i> _v / <i>F</i> _o)/1.8]	n _{PSII}	± 1.3	- 4 to 7
assume	0.5	% <i>a</i> by PSII	± 1.4	+ 2 to 6

1. Biophysical & Optical *a*^{chl}_{PSII} compared - conclusions

• Biophysical and optical approaches yield comparable rates of light absorption (*provided* several variables are measured)...more confidence in biophysical measurements.

• Assumed values for n_{PSII} or proportion of light absorbed by PSII are a significant source of error. How does this contribute to the overall error in estimating PSII productivity?

• We still need 'indirect' measurements...Do n_{PSII} and % total absorption by PSII vary significantly in nature and is the variability systematic (can it be predicted)?

Suggett et al. (2003). Eur. J. Phycol. (38) Suggett et al. (in press) Limnol. Oceanogr: Methods

 σ_{PSII} reflects the amount of light absorbed for photochemistry:

- 1. 'Photochemical': 'Non-photochemical pigments'
- 2. Transfer efficiency of various pigments to chlorophyll a pigmentprotein complex
- 3. RCIIs that are available/functional for linear e flow

 σ_{PSII} reflects the amount of light absorbed for photochemistry:

 σ_{PSII} reflects the amount of light absorbed for photochemistry:

Forward stepwise regression explains >75% of σ_{PSII} variability within and between taxa (with pigment packaging being the greatest predictor of σ_{PSII} .

BUT the remaining variability - error? transfer efficiencies? (What is a photochemcially active versus a non-photochemically active pigment?).

Largest variability in σ_{PSII} is observed between taxa. Therefore, changes in σ_{PSII} can be explained by alterations in phytoplankton community structure.

Largest variability in σ_{PSII} is observed between taxa. Therefore, changes in σ_{PSII} can be explained by alterations in phytoplankton community structure.

Are the greatest changes of σ_{PSII} in nature the result of shifts in the predominant phytoplankter?

 σ_{PSII} also varies under ambient light from non-photochemical quenching of fluorescence in the antenna bed.

Therefore, σ_{PSII} (σ_{PSII} ') should be considered:

Routine use in mechanistic PSII productivity models (removing some of the concerns of an appropriate blank?).

Building a highly sensitive light absorption component into acclimation models.

Again, expect largest variations between phytoplankton communities. However, variation from RCII availability will also be significant (Growth acclimation - Δ chl $a > \Delta$ RCII; Growth limitation Δ chl $a < \Delta$ RCII)

Measurements of n_{PSII} currently limited by ability to measure changes in O_2 (Important for accuracy of PSII productivity models). Also, provides a direct measure of the min. quantum requirement of O_2 evolution (However, n_{PSII} is a measure of net O_2 evolution...)

Future Perspectives...

 σ_{PSII} is a highly useful parameter for understanding algal growth. However, we need a better understanding of:

- (a) How pigments operate (eg. transfer efficiencies of various pigment compliments).
- (b) Control of σ_{PSII} in cyanobacteria.
- (b) Environmental dependence of PSI (σ_{PSI} and RCIs) that may act to alter σ_{PSII} but more importantly the energy available for photochemistry.

n_{PSII} is a fundamental parameter to place biophysical absorption into a relevant environmental context. Therefore,

(a) Understand the variability of n_{PSII} from environmental change/multiple limitation.

(b) Accurate n_{PSII} from O_2 (or CO_2 ?) must quantify factors that alter the min. quantum requirement for O_2 evolution and intracellular O_2 consumption....What do our 'productivity' estimates using fluorescence currently mean.

Acknowledgements

Laboratory: John Bartington, Paul Beckwith & Kevin Oxborough (University of Essex); Laurie van Heukelem (University of Maryland)

Field: Patrick Holligan, Young Nam Kim & Jacqui Tweddle (Southampton Oceanography Centre); Jonathan Sharples (Proudman Oceanographic Laboratory); Gayle Harris (University of Essex); Captain & crew of *RRS James Clark Ross;* **AMT**: Jim Aiken, Claudia Omachi & Nigel Rees (Plymouth Marine Lab.).

This work was supported by the National Environment Research Council, UK (NER/A/S/2000/01237 to RJG), with additional support from the US National Science Foundation (grant OCE-9907702 HLM).