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d on first order relationships between ocean color and the chlorophyll
concentration ([Chl]; mg m−3) are widely used, but cannot explain the statistical dispersion or “anomalies”
around the mean trends. We use an empirical approach that removes the first order effects of [Chl] from
satellite ocean color, thus allowing us to quantify the impact on the ocean color signal of optical anomalies
that vary independently of the global mean trends with remotely sensed [Chl]. We then present statistical
and modeling analyses to interpret the observed anomalies in terms of their optical sources (i.e. absorption
and backscattering coefficients). We identify two main sources of second order variability for a given [Chl]:
1) the amount of non-algal absorption, especially due to colored dissolved organic matter; and 2) the
amplitude of the backscattering coefficient of particles. The global distribution of the anomalies displays
significant regional and seasonal trends, providing important information for characterizing the marine
optical environment and for inferring biogeochemical influences. We subsequently use our empirically
determined anomalies to estimate the backscattering coefficient of particles and the combined absorption
coefficient for colored detrital and dissolved materials. This purely empirical approach provides an
independent assessment of second order optical variability for comparison with existing methods that are
generally based on semi-analytical models.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Ocean color can be quantified as the normalized water-leaving
radiance (nLw; in mW cm−2 μm−1 sr−1) at several wavelengths in the
visible spectrum (e.g. 412, 443, 488, 531 and 551 nm for the MODIS
instrument on the Aqua platform). The nLw is defined as the radiance
that would be measured exiting a flat ocean surface with the sun at
zenith and the atmosphere absent (Gordon et al., 1988). If correctly
normalized (Morel et al., 2002), nLw is theoretically independent of
the observational conditions and varies only with the amount and
composition of constituents that absorb and backscatter light
according to a relationship of the form

nLw λð Þ ¼ f bb λð Þ; a λð Þð Þ ð1Þ
where f represents a function, bb(λ) the backscattering coefficient
(m−1), a(λ) the absorption coefficient (m−1), and λ the wavelength
(nm) (Morel and Prieur, 1977).
ire d'Océanographie de Ville-

l rights reserved.
In open ocean waters far from the influence of terrestrial runoff,
generally referred to as Case 1 waters, the spectral quality and
intensity of light leaving the ocean depends to the first order on the
concentration of phytoplankton (Morel and Prieur, 1977; Morel,
1980). Since phytoplankton absorb strongly in the blue and weakly
in the green, empirical algorithms of ocean color based on blue-to-
green ratios are used to estimate the chlorophyll a concentration
([Chl], in mg m−3) within the upper layer of the water column
(McClain et al., 1998; O'Reilly et al., 1998; McClain et al., 2004).
These algorithms inherently account for the average effect of all in-
water constituents on the measured optical signal, insofar as they
co-vary predictably with the algal biomass. Optically significant
substances that influence ocean color other than phytoplankton and
the water medium include: 1) organic particles, 2) inorganic par-
ticles, and 3) colored dissolved organic matter (CDOM) (Sathyen-
dranath et al., 1989; Carder et al., 1991; IOCCG, 2000; Stramski et al.,
2001). Standard empirical algorithms, however, do not explain the
statistical dispersion around the mean trends, which we refer to
here interchangeably as “second order variability” and “anomalies”
in ocean color.

Advances in the analysis of ocean color data have led to inverse
methods based upon models such as Eq. (1) for the separation of
light absorbing and backscattering components in seawater. Semi-
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Table 1
Description of the datasets

Dataset Name Location Description

nLw database Global 540,000 MODIS Aqua nLw and
anomaly spectra

Statistical database Global 10,800 anomaly spectra extracted
randomly from the nLw database

Modeling results Applicable to Case 1
waters

Simulated anomaly spectra using
an ocean color model for Case 1 waters

Match-up database Global 334 MODIS nLw spectra and match-up [Chl]
BBOP dataset Bermuda Atlantic

Timeseries Study
(near Bermuda)

Five year timeseries of surface
absorption and radiometric data

BIOSOPE dataset Southeastern Pacific In situ bbp and [Chl] data measured
in surface waters and MODIS Aqua data
extracted along the BIOSOPE transect

IOCCG dataset Global, but biased to
coastal waters

656 stations providing in situ
measurements of Rrs, [Chl] and aCDM(412)
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analytical inverse models provide global estimates of [Chl] of
comparable accuracy to the empirical band ratio algorithms, with
the added benefit of simultaneously retrieving other optical con-
stituents such as absorption coefficients (e.g. for CDOM, non-algal
particulate matter and phytoplankton) and particulate backscatter-
ing coefficients (bbp; m−1) (e.g. Roesler and Perry, 1995; Hoge and
Lyon, 1996; Lee et al., 2002; Maritorena et al., 2002). Many of these
models require that spectral shapes, based on empirical datasets,
be pre-assigned to the various optical components in order to
subsequently solve for the constituents' magnitudes using an opti-
mization procedure. Other approaches rely more on manipulating
analytical radiative transfer equations. The application of such
models to satellite imagery produced the first global analyses of
second order optical variability in open ocean waters showing that
non-algal absorption and bbp vary to some extent independently
of the [Chl] distribution (Loisel et al., 2002; Siegel et al., 2002,
2005). The term non-algal absorption encompasses the effects of
both CDOM and non-algal particulate absorption, but the propor-
tion of the former in the open ocean is often considered to be
significantly greater (Siegel et al., 2002); here, we will refer to
these optical constituents collectively as colored detrital and dis-
solved materials (CDM) and to their absorption coefficient as aCDM
(m−1). The uncertainty in the global distributions of aCDM and bbp
derived from semi-analytical models is largely due to: 1) the
paucity of field observations for ground truth validation, and 2) the
similar optical parameterizations used by many models that can
limit efforts for the independent evaluation of their results (IOCCG,
2006).

Natural variability around the mean statistical relationships for
Case 1 waters is a well-recognized feature (Gordon and Morel, 1983;
Morel, 1988; Bricaud et al., 1995, 1998; Lee and Hu, 2006). In some
cases, specific regions have been compared (Morel et al., 2007a) to
examine locations where second order variability consistently
differs from the global average. Large in situ datasets have also
been used to systematically analyze this dispersion (Bricaud et al.,
2004). Alvain et al. (2005) empirically relate second order variability
in SeaWiFS spectra to four phytoplankton groups based on a dataset
of coincident nLw observations and pigment measurements. Ocean
color anomalies were calculated by dividing SeaWiFS nLw observa-
tions by empirically derived reference spectra from a look-up table
of SeaWiFS [Chl] and nLw, thus removing the first order variability
in ocean color. The method does not require any assumptions about
the characteristics of the optically significant constituents. Instead,
it simply associates the dominant algal group in a sample with a
range of average anomaly. Furthermore, it avoids potential biases
present in a particular ocean color sensor measurement or pro-
cessing scheme.

For ocean color data, it can be proposed that departures from the
established global mean trends with [Chl] generally arise from two
main conditions.

Firstly, the optical constituents may vary completely indepen-
dently of each other or the algal biomass; these are the so-called Case
2 waters where variability comes from substances other than the algal
retinue (i.e. “algal retinue” refers to all material that covaries with
[Chl]). Examples include the episodic upwelling of CDM richwater and
aeolian deposition of desert dust, as well as the effect of terrestrial
runoff in coastal waters.

Secondly, the optical constituents may co-vary with [Chl] over a
given region, but the relationships could be different from the global
mean trends. These conditions give rise to ocean color nuances in
so-called Case 1 waters and are the focus of this paper. Two main
sources of this variability can be identified, the first is variability in
chlorophyll specific coefficients (i.e. absorption and backscattering
coefficients normalized to [Chl]) for the non-algal material; that is,
variability in the algal retinue that is not well represented by the
established mean trends. For example, for a given [Chl] compared to
the global average, the Mediterranean Sea has higher CDM
absorption, whereas the subtropical Pacific Ocean has lower CDM
absorption (Morel et al., 2007a). It has furthermore been hypothe-
sized that unique biota and associated detrital material occurring in
the presence of specific algal groups may lead to this type of nuance
in ocean color. The second source of variability is due to the
chlorophyll specific coefficients of phytoplankton, which may also
differ from the global mean trends. Variability in algal properties
occurs, for example, during coccolithophore blooms (e.g. Balch et al.,
1996) and in other high [Chl] conditions associated with changes in
the algal absorption spectra (e.g. changes in pigment packaging or
pigment composition) (Bricaud et al., 1988; Morel, 1988; Loisel and
Morel, 1998).

In this study, we use an empirical approach to examine sec-
ond order variability in ocean color; our aim is to broadly analyze
the sources of this variability in terms of potential optically
significant substances and without introducing a priori assump-
tions about the influence of algal groups. To do so, differences
between satellite measured nLw and the global mean nLw are
calculated for a common ocean color index (e.g. maximum band
ratio, MBR, which serves as a proxy for [Chl] in many operational
remote-sensing algorithms, O'Reilly et al., 1998). By removing the
information contained in the biomass field, the relative influence
of other optical constituents and hence their distributions are
observed. We obtain estimates of second order variability in an
approach completely independent of semi-analytical models and
with some significant advantages. Most notably, our method does
not require various assumptions or parameterizations for char-
acterizing the spectral shapes of the optical constituents and is
not influenced by potential biases in the underlying physical
model.

Our study will be presented in four steps. Firstly, a statistical
analysis will be used to identify the main types of anomalies observed
in satellite ocean color. Secondly, a modeling analysis is undertaken to
interpret the identified anomalies in terms of optically significant
constituents. Thirdly, various in situ datasets are used to evaluate our
results. Finally, global algorithms for bbp and aCDM are developed
based upon anomalies observed in satellite ocean color.

2. Methods and data

2.1. Statistical analysis

2.1.1. First order variability
In a manner analogous to Alvain et al. (2005) we use an

empirical approach to remove first order variability from satellite
ocean color thereby allowing us to identify second order effects.
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Twelve global eight-day composites (MODIS-Aqua, Level-3 binned
data) spanning the year 2005 (i.e. one image per month) were
downloaded from NASA's ocean color website (http://oceancolor.
gsfc.nasa.gov/). To obtain a representative sample of the variability
present in remotely sensed nLw, 45,000 pixels were randomly
selected from each of the twelve eight-day composite images, thus
providing 540,000 nLw spectra (the “nLw database”; see Table 1. for
a description of the different datasets used herein). No attempts
were made to exclude coastal (Case 2) waters, which form only a
small fraction of the total oceanic surface and thus have a limited
influence on the results. For each spectrum, the maximum band
ratio (MBR) was computed as the maximum of two ratios, 551

443RLw
(i.e. 551

443RLw=nLw443 /nLw551) and 551
488RLw, such that MBR=max

(551443RLw, 551
488RLw). We retain the original 551 nm notation for band

4, while noting that 547 nm is the correct waveband center. Eleven
polynomial fits were obtained for the “nLw database” between: 1)
nLw (i.e. 412, 443, 488, 531 and 551 nm) vs. MBR; and 2) nLw ratios
(i.e. 443412RLw, 488412RLw, 531412RLw, 488443RLw, 531443RLw and 531

488RLw,) vs. MBR. While
the fits could have been carried out using [Chl] as the independent
variable, to avoid limiting the approach to a specific [Chl] algorithm
or versionwe instead opted to use the MBR. We represent the results
of these fits as nL̂wλ and j

iR̂Lw, where i and j correspond to the
wavebands of the numerator and denominator, respectively. These
fits are empirical measures of first order variability, which we will
subtract from our ocean color observations in order to examine only
second order effects.
Fig.1. Polynomial fits for different ocean color measures (see the ordinate label) and the maxim
2.1.2. Second order variability
Each of the 540,000 pixels in the “nLw database” is assigned a

vector, or anomaly spectrum (AS), with eleven elements representing
differences relative to a hypothetical “average pixel” with the same
MBR (represented by nL̂wλ and j

iR̂Lw),

AS ¼

nLw412 − nL̂w412
v

nLw551 − nL̂w551
412
443RLw − 412

443 R̂Lw

v
488
531RLw − 488

531 R̂Lw

2
6666664

3
7777775
¼

AS412
v

AS551
412
443AS

v
488
531AS

2
6666664

3
7777775

ð2Þ

The notation for the AS vector uses ASk to represent an element
corresponding to a single nLw band (k is the waveband center, e.g.
AS412), whereas j

iAS corresponds to a ratio of nLw bands (i and j are
the wavebands for the numerator and denominator, respectively,
e.g. 443

412AS). To normalize AS for the subsequent clustering analysis,
for each element we subtract the mean (

―
AS) anomaly for all pixels for a

given band or ratio of bands and divide by their standard deviation
(σAS) referring to this normalized vector as ASN (e.g. for AS551, ASN551 ¼
AS551−

―
AS551

� �
=σAS 551ð Þ).

2.1.3. Data mining
Statistical techniques for data mining are designed to extract use-

ful information from large datasets and include methods such as
um band ratio (MBR, themaximum of either nLw(443)/nLw(551) or nLw(488)/nLw(551)).

http://oceancolor.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov/


Fig. 2. Examples of average spectra of nL̂w (top panel) and curves for j
iR̂Lw (bottom

panel) for different MBR (see legend in top panel). The numbers in parentheses in the
legend represent [Chl] as computed using the OC3M algorithm.
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clustering and principal component analysis (PCA). These two
methods are used in conjunction to identify the main types of
variability in the ASN vectors. We randomly select 1 out of every 50
ASN vectors from the total of 540,000 contained in the “nLw database”
and are left with 10,800 ASN vectors for the statistical analysis (the
“statistical database”). For the cluster analysis, we use a standard K-
means algorithm (MacQueen, 1967) that iteratively relocates the
“centroid” representing the theoretically average ASN spectrum
associated with each cluster. The algorithm aims to minimize the
total intra-cluster variance, in this case a squared error function

V ¼ ∑
q

p¼1
∑

xnaSp
jxn−μpj2; ð3Þ

where there are q clusters identified here as Sp (p=1,2,…,q), xn is a vector
representing thenth data point, andμp is the centroid ormeanpoint of all
the points xn∈Sp. This algorithm categorizes variability in large datasets
by matching each data point to a centroid. This unsupervised classifica-
tionmethod requires that the number of groups be pre-determined. This
is generally done by running the classification method for different
numbers of clusters and then using standard indices to evaluate the
“correct” number of clusters; these indices usually compare the changes
in the variance explained by the addition of a new cluster. We examined
several of these indices in order to choose the final number of clusters.
We found that the number of clusters varies slightly (generally ±1)
amongst the indices chosen. We also verified that our results and
conclusions are not affected by the number of clusters within the ranges
provided by the different indices. Three different sets of anomalies were
obtained for: 1) normalized water-leaving radiance only (i.e. ASk; “nLw
clusters”); 2) nLw band ratios only (i.e. jiAS; “band ratio clusters”); and
3) combined nLw and nLw ratios (i.e. ASk and j

iAS; “mixed clusters”). To
avoid local minima during the minimization step, we chose the sets of
clusters that explained themost variance in thedataset after reinitializing
the K-means algorithm 20 times with randomly selected initial values.

The cluster analysis can identify the main types of variability in the
“statistical database” but it does not provide a description of the sources
of this variability in terms of optical constituents. This biogeochemical
interpretation is developed using a modeling study described below.

2.2. Modeling study

The method developed in this study utilizes anomalies from the
mean ocean color relationships as a function of the MBR. To develop a
theoretical framework for the interpretation of these anomalies, we
examine a series of radiative transfer simulations (described in detail
in Appendix 1 and summarized in Table A1) with a diverse range of
optical constituents that result in the same MBR, and hence [Chl] as
retrieved from empirical algorithms. In this way, the modeling study
allows us to simulate and compare the influence that various optical
conditions with the same MBR have on the AS vectors. For four
different [Chl] (see Appendix 1), we simulate the effect of both
increasing and decreasing: 1) aCDM; 2) bbp amplitude; and 3) bbp
slope. The bbp slope is the exponent of a power law describing the
spectral dependency of the particulate backscattering coefficient. The
lowest (0.03 mg m−3) and highest (0.5 mg m−3) [Chl] were chosen to
bound ∼97% of the surface [Chl] observed in the world ocean by
satellite remote sensing (Antoine et al., 2005).

2.3. Match-up database

We acquired MODIS-Aqua Level-2 [Chl] validation results from the
NASA Ocean Biology Processing Group. This dataset consists of 334
coincident pairs of satellite remote sensing reflectance (Rrs, the ratio of
water-leaving radiance to surface irradiance; calculated using nLw/F0,
where F0 is themean extraterrestrial solar irradiance) and in situ [Chl],
where 271 in situ values were obtained by fluorometry and 100 by
HPLC (when both values are available we chose the HPLC values).
Bailey and Werdell (2006) provide a complete description of the
satellite-to-in situ validation process. Briefly, Level-2 files were
generated using the MODIS-Aqua Reprocessing 1.1 processing config-
uration, which includes the Gordon and Wang (1994) atmospheric
correction approach, plus corrections for near infrared water-leaving
radiances, bi-directional reflectance, and spectral band-pass effects
(Morel et al., 2002; Patt et al., 2003). Pixels including land, clouds, ice,
stray light, sun glint, high top-of-the-atmosphere radiances, or cloud
shadows were masked. Only pixels with satellite zenith and solar
zenith angles less than 60° and 75°, respectively, were retained, as this
geometry corresponds to the limits of reliability for the atmospheric
correction process. In generating the “match-up” dataset, temporal
coincidence is defined as ±3 h and satellite values are determined as
themedian of all valid pixels within a 5×5 pixel box centered on the in
situ target after outliers are rejected. Finally, to ensure statistical
significance andmoderate homogeneity, satellite values were rejected
when fewer than 50% of non-land pixels in the satellite box were
unmasked orwhen the coefficient of variation of the satellite radiances
within this box exceeded 0.15. Additional satellite pixel exclusion
criteria and homogeneity tests are graphically described in Fig. 1 of
Bailey and Werdell (2006). For this analysis, to remain as close as
possible to prevailing remote sensing conditions, we decided to keep
43 nLw spectra, which have negative nLw at 412 nm; the interpretation
of the results do not change if these points are excluded.

2.4. In situ data

We evaluate our backscattering and CDM anomalies using two
regional datasets: the first is from the Bermuda Bio-Optics Project
(BBOP) associated with the Bermuda Atlantic Times series Study
(BATS), and the second from the Biogeochemistry and Optics South
Pacific Experiment (BIOSOPE). The first consists of a five-year time
series of surface (we restricted the analysis to the top 20mof thewater
column) radiometric and spectrophotometric absorption data that
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were obtained from the BBOPwebsite. The second is from a transect in
the Southeastern Pacific; a more detailed description of this dataset is
given in Huot et al. (2008) and further details on the collection and
processing of the in situ surface backscattering data can be found in
Stramski et al. (2007).

We evaluate our CDM absorption algorithm using the IOCCG in situ
dataset (IOCCG, 2006). Briefly, it contains 656 stations with matched
measurements of [Chl], spectral remote sensing reflectance (we used
555 nm instead of 551 nm as used by MODIS for our computations),
and CDM absorption. These measurements are compiled from the
work of different researchers throughout the world ocean. They are,
however, mostly measured relatively near the coast. For our applica-
tion, Rrs from the dataset was multiplied by the extraterrestrial solar
spectrum used by MODIS and obtained from the NASA ocean color
website.

3. Results and discussion

3.1. First order variability

Thefirst order variability in ocean color is captured byfittingfifth or
sixth order polynomials tonLwand ratios of nLw in the “nLwdatabase”
as a function of theMBR (Fig.1). These fits are respectively represented
by nL̂wλ and j

iR̂Lw. From these mean relationships, we can calculate the
nL̂wλ spectra (Fig. 2A) and j

iR̂Lw curves (Fig. 2B) for any MBR. The nL̂wλ

spectra illustrate the expected relationships with changing [Chl], and
are generally consistentwith the trends produced by bio-optical Case 1
models (e.g. Fig. 8 in Morel and Maritorena, 2001).
Fig. 3. Three types of clusters and associated PCA for the anomaly spectra. Left column shows
right column the unnormalized centroids. Top row corresponding to “nLw clusters” (seven c
clusters” (ten centroids). The percentage of variability explained by each principal compone
3.2. Statistical analysis

The first analysis consists of clustering the MODIS anomaly spectra
from the “statistical database”. Three types of cluster centroids (Fig. 3,
left column) are obtained corresponding to “nLw clusters”, “band ratio
clusters” and “mixed clusters”. For comparison, PCA (Fig. 3, middle
column) are presented as an alternative examination of variability in
the dataset; they are found to be consistently in agreement with the
clustering results. The PCA for the “nLw clusters” (Fig. 3B) shows that
most of the variability (89%) lies in a spectrally flat component. This is
reflected in the clusters as a series of flat spectra of various mag-
nitudes (Fig. 3A); an exception is the uppermost spectrum exhibiting
a slope that reveals the effect of the second principal component
(Fig. 3B). Fig. 3D shows that relatively flat curves are also representa-
tive of the “band ratio clusters”, with an exception for 531

488RLw. The
corresponding PCA (Fig. 3E) describes 67% of the variability by a flat
principal component, also with an exception for 531

488RLw. The second
principal component represents 21% of the variability; its effect is
most apparent in two centroids in Fig. 3D (second and third curves
from the top showing a corresponding inflection at 531

412RLw). The
“mixed cluster” centroids (Fig. 3G) combine information from the two
previous analyses (i.e. five nLw and six nLw ratios as shown along the
abscissa). Except for the uppermost spectrum that consistently shows
a positive slope for which the first five points (i.e. 412 to 555 nm) are
similar to the top cluster in Fig. 3A, G illustrates the influence of
nLw ratios on the “mixed clusters”. Indeed the first three data points
of each spectrum (i.e. 412, 443, 488 nm) now have a positively or
negatively sloping trend compared to the same wavebands in Fig. 3A
the normalized cluster centroids, middle column the principal component weights, and
entroids), middle row to “band ratio clusters” (six centroids), and bottom row to “mixed
nt is provided in parentheses in the legend for each panel in the middle column.
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which formed a flat line. This implies that most of the variability
observed in the two types of anomalies (i.e. ASkN and j

iASN) originates
from different sources.

3.3. Interpretation of statistical analysis using the modeling results

We now turn to the modeling study to interpret the results of the
statistical analysis presented in Section 3.2. Our sensitivity analysis
allows us to model anomalies that are expected from variability in
different optical components relative to the mean trend. If the shapes
and (to a lesser extent) the absolute value of these modeled anomalies
reproduce the centroids observed in Section 3.2, it is a strong in-
dication that these anomalies originate from the optical constituent
Fig. 4. Themodeling analysis demonstrates the effect of different optical components on the a
columns, respectively. Each rowcorresponds to a different set of departures from the standard
absorption, and bottom row for the slope of bbp. The line type corresponds to different [Chl] (se
aCDM, bbp, or the slope of bbp), and the black lines represent a decrease in the same paramete
CDMabsorption,wemodify anw(λ) byadding and subtracting 0.5⁎anw(400)exp(−0.017⁎ (λ−4
and dividing the absolute value by 2; and 3) to examine the effect of the backscattering shap
adding and subtracting 0.5 to this value.
that is varied in the sensitivity analysis. We will focus specifically on
the nLw and band ratio anomalies, leaving aside the “mixed clusters”.

The first step in order to compare the cluster centroids to the
modeling study is to remove the normalization of the clusters (i.e.
the normalized centroids are multiplied by the standard deviation
and the mean is added; Fig. 3, right column). Since we have already
subtracted the best fit by nature of our method, the effect of adding
the mean to all bands is very small. In contrast, multiplying by
the standard deviation significantly modifies the spectral shapes
compared to the normalized centroids (Fig. 3, compare left and
right columns).

The striking resemblance between Fig. 4D and 3F leaves little
doubt that CDM absorption is the most important effect on the “band
mplitude of nLw (ASksim) and spectral ratios of nLw (jiASsim), as shown in the left and right
model. The top row simulates variations for the bbp amplitude, middle row for the CDM
e legend inpanel C), while the blue lines indicate an increase of the parameters (whether
rs. For each of the three [Chl] cases, we obtain two sub-cases: 1) to examine the effect of
00)); 2) to examine the effect of the backscattering amplitude, we alter bbp bymultiplying
e, we change the slope parameter for backscattering (v in MM01v07, see Appendix 1) by
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ratio clusters” (jiAS). Not only the shapes of the curves but also the
absolute values of the anomalous nLw ratios are consistent between
the statistical and modeling results. Varying the CDM slope does not
change this interpretation; CDM spectra with less negative slopes
have more flattened anomaly spectra but retain their distinct spectral
signature (Fig. 5).

The effect of the bbp amplitude on the “nLw clusters” (ASk) is
strongly suggested by a comparison between Fig. 4A and 3C. The
varying amplitudes of the clusters observed in Fig. 3C can be easily
reproduced by the model (not shown) by changing the amount of
backscattering added or subtracted from the standard model.

The fact that the shapes of the bbp anomaly spectra and CDM
anomaly curves (e.g. Fig. 4A and D) change with [Chl] means that the
shapes of the spectra for the cluster centroids are not expected to be
“independent” of first order variability. While this feature could be
exploited to separate the effects of variable bbp or CDM signatures at
different [Chl], herein, we will attempt to avoid these effects.

In Fig. 4E and F, an interesting feature of the modeling results is
that despite a relatively large (compare for example with Loisel et al.,
2006; Snyder et al., 2008) variation in the slope of bbp (±1) for a given
MBR its influence on the spectral nLw anomalies is small. The effect of
varying the slope of bbp is generally ten times less than that of the
other parameters tested (but becoming more important at longer
wavelengths). It is thus not expected that the effect of a variable slope
will be detectable from space using our approach; other methods have
been proposed to accomplish this (Loisel et al., 2006).

A closer inspection of Figs. 3 and 4 suggests that both the 531
and 551 nm wavebands provide a good measure of the bbp anomaly
for the “nLw clusters”. The variations in bbp are apparent in the
anomalies because their magnitudes are proportional to the addition
or removal of backscattering. Therefore, to simplify our approach in
the remainder of this paper we will use only the 551 nm waveband
(AS551) to represent the bbp anomaly (this waveband, or 555 nm, was
also chosen for similar purposes by other authors, e.g. Carder et al.,
1999; Stramski et al., 1999; Lee and Hu, 2006; Morel and Gentili,
2008). This band tends to be the least affected by variability in
absorption by CDM (e.g. Fig. 4C) or phytoplankton. For the CDM
anomaly, both the ratios 412/443 and 412/488 provide consistent
measures of the CDM effect for the “band ratio clusters” (Fig. 4D).
Note that for all [Chl] we added the same relative amount of CDM
absorption to anw (see Appendix 1), and thus expect a similar effect
on the band ratios (and CDM anomaly) for all [Chl]. To simplify the
utilization of the CDM anomaly we will use only one ratio; we
arbitrarily chose to use the 412/488 ratio.
Fig. 5.Modeling results showing the effect of changing the slope of the CDM spectra on
the spectral ratios of nLw (jiASsim). The simulation was carried out at 0.12 mg chl m−3.
“Increase” and “decrease” in the legend refer to an increase or decrease of the amount of
aCDM from the standard model (i.e. ±0.5⁎anw(400)exp[−slp⁎ (λ−400)] , where slp is
given in the legend). These results complement the results of Fig. 4D, which were
carried out at different [Chl] but for only one slope for CDM (0.017).
3.4. Evaluation

Thus far, the modeling study indicates that the origin of anomalies
in global ocean color remote sensing data lies in the variability of
two main optical properties for any given [Chl]: 1) the absorption
coefficient of colored detrital and dissolved matter, and 2) the back-
scattering coefficient of particulate matter. This finding is unlikely to
surprise optical oceanographers, as these two optical properties have
been included in some of the earliest ocean colormodels in addition to
[Chl] (e.g. Sathyendranath et al., 1989).

In the next few sections, we describe a variety of analyses using
in situ data that support the results of our statistical and modeling
studies, and hence our interpretation of ocean color anomalies in
terms of aCDM and bbp. It is more difficult to validate interpretations of
second order variability in ocean color compared to first order effects
because the signal is considerably weaker and thus requires more
accurate measurements.

3.4.1. Global distribution of anomalies
The bbp anomaly represents variability in bbp that is independent

of the global mean trends with [Chl]. Indeed, because the mean
trend is subtracted, the distribution of positive and negative values
must differ from the MBR or [Chl] distributions such that rough-
ly half of the oceanic areas with a given [Chl] will have positive
anomalies, the other half, negative anomalies. The temporal changes
in the spatial distributions shown in Fig. 6. (left column) display
strong seasonal patterns in the mid and high latitudes characterized
by the progressive intensification of the bbp anomaly with the local
onset of spring/summer and then decreasing throughout the
autumn and into winter. The same seasonal progression occurs in
both the northern and southern hemispheres. The high bbp
anomalies in the northern hemisphere, occurring from approxi-
mately June to July in the Atlantic Ocean and June to September in
the Pacific Ocean (Fig. 6 shows data for only June and September),
could in part be due to coccolithophore blooms. In the austral ocean
during summer, a zonal band associated with the Antarctic
Convergence displays high bbp anomalies. By contrast, low bbp
anomalies are concurrently found in the Ross and Weddell Seas, and
west of the Antarctic Peninsula, consistent with in situ studies
(regional maps not shown, e.g. Stramski et al., 1999; Dierssen and
Smith, 2000; Reynolds et al., 2001). In the Mediterranean Sea,
more oligotrophic regions in the southeast tend to show higher bbp
anomalies compared to higher chlorophyll regions in the northwest
(Claustre et al., 2002). While the nLw anomalies provide a means
to view the global distribution and temporal evolution of bulk
backscattering, their specific origin (i.e. silica frustules, coccoliths,
sea foam, desert dust, sulfur plumes or organic detrital material)
cannot be identified using this approach.

The CDM anomalies are shown in Fig. 6 (right column) and
represent variability in the proportion of CDM to chlorophyll that
differs from the global mean for a given [Chl]. In general, the Pacific
Ocean has lower CDM anomalies in the tropics and subtropics
compared to the Atlantic Ocean. A seasonal pattern in the northern
hemisphere is observed when the CDM anomaly is low coincident
with the spring bloom (June in right column of Fig. 6 and 7),
particularly in the Atlantic Ocean. The decrease in the CDM anomaly
is likely due to algal blooms occurring in waters with a relatively
constant CDM background. In the very high latitude northern
hemisphere, CDM anomalies appear to be almost continually high. A
series of studies have reported that trends in the bio-optical
properties of polar waters differ significantly from those of lower
latitudes (Mitchell and Holm-hansen, 1991; Mitchell, 1992; Arrigo
et al., 1998; Sathyendranath et al., 2001; Cota et al., 2003; Stramska
et al., 2003). The difference has often been attributed to highly
packaged pigments within large phytoplankton such as diatoms
leading to underestimates of [Chl] by global algorithms (e.g. Cota



Fig. 6. Global distribution of normalized ocean color anomalies (ASN). Left and right columns show the backscattering and CDM anomalies, respectively (warmer colors represent
higher anomalies). From top to bottom, monthly images for March, June, September and December for the year 2006.
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et al., 2003). In addition, the very high proportion of CDM absorption
to total absorption has been observed to have a strong effect on ocean
color algorithms (Matsuoka et al., 2007). However, while consistent
with in situ observations, these anomalies at high latitudes must
be verified due to the potential for artifacts in the imagery (see
Section 3.4.3).

3.4.2. Evaluation of the CDM anomaly
An evaluation of the CDM anomaly (488412ASN) using data from

BBOP in the Sargasso Sea is shown in Fig. 8. This time series is
influenced by an annual spring bloom occurring at the end of
January or beginning of February, which is represented by the yearly
increase in the algal absorption coefficient (Fig. 8A). The CDOM
absorption coefficient, by contrast, shows less variability remaining
fairly constant throughout the year (Fig. 8A); the first two years of
the time series display the most variability in CDOM absorption. The
ratio of CDOM to phytoplankton absorption shows a minimum at the
beginning of each year and a maximum during the summer (Fig. 8B,
this is most clearly shown when in situ sampling was more frequent
during the first two years). As shown in Fig. 8C, variability in this
ratio is clearly reflected in the 340 to 443 nm spectral ratio of the
diffuse attenuation coefficient, once the diffuse attenuation coeffi-
cient of pure water has been subtracted (Morel and Maritorena,
2001). While satellite measurements of the CDM anomaly (488412ASN in



Fig. 7. Global distribution of log10[Chl]. From top to bottom, monthly images for March,
June, September and December for the year 2006 (warmer colors represent higher
[Chl]).
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Fig. 8D) show more variability than in situ measurements, the
minimum values (consistent with an interpretation of a higher
phytoplankton concentration for a given CDOM absorption) always
occur in January and February (except in 2006 when a few data
points are missing) when the values are negative. For most of the
year 488

412ASN is positive suggesting a greater amount of CDM for a
given [Chl] than the average (488412ASN≡0) for the global ocean at this
location. This trend of negative 488

412ASN occurring during seasonal
algal blooms is also observed in the CDM anomaly maps shown in
Fig. 6. (right column), particularly in the northwest Mediterranean
Sea (March), North Atlantic Ocean (June) and the Pacific sector of the
Southern Ocean (December).
3.4.3. Match-up database
The Aqua match-up database allows us to examine whether

ocean color anomalies explain any of the discrepancies observed
between algal biomass estimated using ocean color algorithms and
biomass measured in situ and if so, whether the discrepancies are
consistent with our interpretation of the anomalies. In Fig. 9 (panels
A to D), the CDM anomalies are shown to be associated with biases
in the estimated [Chl] using the standard MODIS algorithm, OC3M
(O'Reilly et al., 2000). We show that “high CDM” waters (panel C)
are generally associated with higher estimates of [Chl], whereas
“low CDM” waters (panel D) are associated with lower estimates of
[Chl]. This result is to be expected as the increased absorption in the
blue wavelengths due to CDM has the same effect on the blue-to-
green ratio as phytoplankton absorption. As such, the relative con-
centration of CDM to [Chl] differs from the mean trend upon which
the empirical algorithm is based and there should be some error in
the estimates. There is no bias for “average waters” (Fig. 9B). There-
fore, because the CDM anomaly identifies important variability in
ocean color that can be used for identifying “high CDM” and “low
CDM” waters, this information can serve as the basis for simple
corrections to global empirical algorithms for estimating [Chl] in
Case 1 waters. However, due to the limited match-up dataset avail-
able for Aqua, it would be premature to propose a correction scheme
at this time.

Beyond potential biases in the method, there can be problems
in the remote sensing data itself. Despite the fact that a shorter
time series is available as compared to SeaWiFS, Level-3 data from
the MODIS-Aqua sensor were chosen for this study because they are
the least affected by residual sun glint (Morel and Gentili, 2008).
Accordingly, we do not see obvious effects of sun glint in the nLw(551)
images. As for any global analysis, biases in the remotely sensed data,
for example due to errors in the atmospheric correction or very low
signal to noise ratio in some bands, will appear as local or regional
biases in our estimates of the anomalies. For example, the strong
CDM anomaly observed poleward of ∼45° in both the northern and
southern hemispheres (Fig. 6, right column) during their respective
winter seasons requires further investigation especially because of the
conspicuously strong variation of this feature with the time of year
(i.e. solar zenith angle; not shown).

In Fig. 9, we show that for thematch-up database there is no bias in
the estimated [Chl] associated with the bbp anomaly for the “average”
or “low” backscattering waters (Fig. 9F and H). However, for waters
with “high bbp” (Fig. 9G), [Chl] tends to be overestimated. This finding
is in agreement with Balch et al. (2005) and Claustre et al. (2002) who
found that higher scattering waters tend to be greener. A simple
correction scheme for improving estimates of [Chl] using global
empirical algorithms could also be developed for high scattering
waters using the bbp anomaly data.

It is generally recognized that a complete separation of the effects
of CDM and backscattering on the optical characteristics of water can
be difficult to achieve (e.g. Roesler and Boss, 2003). We have shown
that waters with high CDM anomalies are associated with over-
estimates of [Chl] using band ratio algorithms such as OC3M. Our
method may also include some error because it uses MBR as a
reference. In waters with high CDM, the CDM may have a significant
influence on MBR which could cause it to depart strongly from the
global mean optical relationships, thus influencing the value of
nL̂w551 and hence AS551 upon which the bbp anomaly is based. The
expected tendency would be for bbp anomalies to be underestimated
in waters with high CDM anomalies resulting in a negative
correlation between the two anomalies. For example, this may be
the case in the high northern latitudes which at times show high
CDM and low bbp anomalies. For the world ocean, there is a small
negative covariation between the two anomalies (correlation
coefficient, r=−0.40, see Fig. 10); it is difficult to know whether this
reflects real in situ covariation or if it is a bias in the method. Indeed,



Fig. 8.Data from BBOP. A) The absorption coefficients of phytoplankton at 443 nm and CDOM at 285 nm (both in units of m−1). Note that the CDOM absorption coefficients are divided
by 50 to fit the same scale. B) Ratio of CDOM to phytoplankton absorption from panel A. C) Ratio of the diffuse attenuation coefficient at 340 and 443 nm, with the diffuse attenuation
coefficient of pure water subtracted D) CDM anomaly, 488412ASN, from MODIS Aqua data taken at the BATS station. Red circles highlight negative values.
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another potential bias in the estimation of the CDM anomaly could be
the effect of variability in the bbp amplitude on 488

412RLw=nLw412 /
nLw488. However, as shown in Fig. 4B a factor of two variability in the
bbp amplitude has a rather small effect on 488

412RLw as compared to
variability in CDM (Fig. 4D). Corrections for these second order effects
are likely possible using iterative procedures, but are beyond the
scope of the present study.

3.4.4. Algorithms for bbp and CDM
In this section we are interested in exploiting the anomalies

described above and developing algorithms for bbp and CDM usable
for remote sensing. The algorithms that are presented in this section
are also provided in a summarized fashion in Appendix 3 to allow an
easier implementation.

Empirical algorithms for Case 1 waters describe the mean relation-
ship between the variable of interest (e.g. [Chl] or Kd(490)) and spectral
ratios of nLw. There is usually significant variability around the mean
relationship, but it is most often ignored while developing a functional
description of themean trend. In this study, we focus specifically on two
sources of variability: the amount of backscattering and the proportion
of CDM to chlorophyll, both for a given [Chl] (where [Chl] is represented
by theMBR). It should thus be possible, if average relationships between
backscattering and [Chl] (i.e. bbp(551)= f1([Chl])) and between CDM and
[Chl] (i.e. aCDM(412)=g1([Chl])) exist, to refine these relationships based
on the work described herein. In essence, we want to write

bbp 551ð Þ ¼ fI Chl½ �ð Þ þ f2 AS551ð Þ ð4Þ

aCDM 412ð Þ ¼ g1 Chl½ �ð Þ þ g2
412
488AS

� �
ð5Þ
Note that the second term on the right-hand-side of these
equations (f2 and g2) may or may not depend on [Chl] (or equivalently
on MBR) depending on how the radiance anomaly must be
transformed to be expressed in terms of anomalies in bbp(551) or
aCDM(412).

We begin by describing an approach for the bbp algorithm (Eq. (4)).
Morel and Maritorena (2001) have established the following relation-
ship for bbp vs. [Chl],

bMM01
bp 551ð Þ ¼ 0:347 Chl½ �0:766 551

660

� �v

0:002þ 0:01 0:50−0:25log10 Chl½ �ð Þ½ �f g;

ð6Þ
where the varying exponent υ is expressed as

υ ¼ 1=2ð Þ log10 Chl½ �−0:3ð Þ; 0:02 b Chl½ � b 2mg−3;
υ ¼ 0; Chl½ � N 2mg−3

ð7Þ

This relationship was shown to be robust when tested against
in situ data (Huot et al., 2008), and can be used in place of f1([Chl]) for
the estimation of global bbp values. To use anomalies in an algorithm
they need to be “calibrated” in terms of the desired variable, which in
this case is bbp(551). We will use a simple approach by considering
that f2(AS551) can be described as

f2 AS551ð Þ ¼ AS551 f1 Chl½ �ð Þ þ bbwð Þ
nL̂w551

¼
AS551 bMM01

bp þ bbw
� �
nL̂w551

; ð8Þ

where nL̂w551 is the value of our fit for nLw vs. MBR (e.g. Fig. 1). Eq. (8)
can be thought of as a relative departure from the mean relationship
(i.e. the ratio “AS551/nL̂w551”) times the total backscattering coeffi-
cient (i.e. “(bbpMM01+bbw)”). This description thus assumes that all



Fig. 9. Comparison with the Aqua match-up database of the measured and estimated [Chl] using the OC3M algorithm. The left and right columns examine respectively the effects of
the CDM and bbp anomalies on the retrieval of [Chl]. A) We use the normalized CDM anomaly (488412ASN) to separate the points of the Aqua match-up dataset according to their aCDM
relative to [Chl]. Values N0.68 were considered “high CDM” (blue dots), b−0.68 “low CDM” (green dots), and between −0.68 and 0.68 “average” (black dots) (in other words, points
within one standard deviation of the global mean are considered average). B) A histogram of the difference between [Chl] estimated by OC3M and [Chl] measured in situ is presented
for the “average” waters. Similarly, histograms for (C) “high CDM” waters and (D) “low CDM” waters are presented. E) We use the normalized bbp anomaly (AS551N ) to separate the
points of the Aqua match-up dataset according to their bbp anomalies. The same numerical criteria as in panel A are used to separate high, average and low backscattering points.
F) A histogram of the difference between [Chl] estimated by OC3M and [Chl] measured in situ is presented for “average” waters. Similarly, histograms for (G) “high backscattering”
waters and (H) “low backscattering” waters are presented.
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variability in AS551 originates from variability in bbp (i.e. that the ab-
sorption anomalies are small at 551 nm; see Appendix 2 for a complete
derivation of Eq. (8) and Appendix 3 for a step-by-step description of
the algorithm).

Due to the limited in situ data available for bbp, it is difficult
to validate bbp estimates retrieved from remote sensing algorithms.
We will use the BIOSOPE dataset to qualitatively assess our algorithm
(Fig. 11 and 12). Fig. 11A and B (gray points) show the results obtained
by two currently used ocean color algorithms, the Garver–Siegel–
Maritorena model (GSM, Garver and Siegel, 1997; Maritorena et al.,
2002) and the Quasi-Analytical Algorithm (QAA, Lee et al., 2002). In all
panels of Fig. 11, a black line is used to represent the best fit between
the backscattering coefficient and [Chl] at either 443 (for GSM and
QAA) or 551 nm (for this study) as measured in situ along the BIOSOPE
transect. In situ measurements are represented as colored points in
Fig. 11B for 443 nm (see Huot et al. (2008) for details and other
wavelengths). The magenta line represents the bbp

MM01 model (Eqs. (6)
and (7)) of backscattering by particles, that is the “f1([Chl])” term
when the OC3M chlorophyll algorithm is used as input. The scatter
around this line in panel C is due to the f2(AS551) term. Both the GSM
and QAA models tend to overestimate bbp in the low [Chl] waters of
the South Pacific Gyre whereas their accuracy tends to improve at
[Chl] above ∼0.1 mg m−3. Our algorithm performs well across the
entire range of [Chl] despite a slight (∼30%) underestimate above [Chl]
∼0.4 mg m−3. In this region, AS551 is strongly negative (data not
shown) and lowers the prediction. It is difficult to say which aspect
of our algorithm causes these departures, whether the mean trend
bbp
MM01(551) is not representative of the average conditions at high

[Chl] in the world ocean (but see Huot et al., 2008 which suggests
otherwise), AS is incorrectly retrieved in this region due to biases
in ocean color (e.g. atmospheric corrections), or if our algorithm sim-
ply fails at high [Chl]. It is important to remember that this algo-
rithm relies on the mean trend (in this case taken from Morel and
Maritorena, 2001) being representative of the average oceanic trend
(i.e. if bbpMM01(551)=bbp in Appendix 1); any departure from the mean
oceanic trend will show up as a bias in the algorithm. In any case, the
upwelling conditions of these high [Chl] waters resulted in highly
dynamic conditions for which a mean trend is not very meaningful, as
opposed to the more quiescent Gyre and equatorial waters sampled at
lower [Chl] (b∼0.4 mg m−3).

In Fig. 11, the retrieval of the mean bbp trend shows essentially that
the mean relationship described by Morel and Maritorena (2001) is
representative of the BIOSOPE data (compare best fit and bbp

MM01.
However, this does not mean that the dispersion around the trend is



Fig. 10. Covariation between the backscattering (AS551N ) and CDM anomalies (488412ASN).
The main panel shows a density plot of the points as a function of the two anomalies.
The correlation coefficient is r=−0.40. The panels on the top (AS551N ) and right-hand-
side (488412ASN) are histograms showing the number of points as a function of the
anomalies, roughly 95% of the points fall within values of ±2.

Fig. 11. Results from three bbp algorithms for the BIOSOPE cruise track. A) Results from
the GSM algorithm (Maritorena et al., 2002). B) Results from the QAA model (Lee et al.,
2002). C) Results from this study based on nLw(551) anomalies (points are colored
according to longitude). For all figures, the black line represents the best fit to in situ bbp
measurements made during the BIOSOPE cruise (at 443 nm for panels A and B, and
551 nm for panel C), and the magenta line is the representation of backscattering
(Eqs. (6) and (7), applied at 443 nm instead of 551 nm for panels A and B). In panel B, the
colored points are in situ data at 443 nm measured with a Hydroscat instrument and
used to calculate the best fit line (matches the color bar shown inpanel C). Panels A and B
are modified from the work of Huot et al. (2008).
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correct as this originates from the f2(AS) term. The anomalies around the
mean trend are shown in Fig. 12 and are used to evaluate the f2(AS)
component of the algorithm. In this figure, differences between the
measured bbp and the mean trend with respect to [Chl] are shown as a
function of longitude along the BIOSOPE cruise track both for our
satellite-based estimates of bbp (Fig. 12A) and the in situ measurements
(Fig. 12B). In the case of the satellite data, the bbp

MM01(551) line is
subtracted from the mean trend thus leaving the f2(AS) term while for
the in situ data a power law fit to the data is used (given in Huot et al.,
2008). A fifth order polynomial fit to these anomalies is drawn on
both panels to illustrate the trend with longitude observed in these
anomalies. This analysis demonstrates the strong similarity between
two independent datasets; in both cases, the optical conditions in the
center of the South Pacific Gyre (longitude −95 to −135°W) show
distinctly lower bbp anomalies than the surrounding waters.

The seasonal progression of global bbp as retrieved with this
algorithm is presented in Fig. 14 (left column). The overall spatial
distribution is generally consistent with the five-year mean field for
bbp produced by the GSM model (see Fig. 2D in Siegel et al., 2005);
however, our values in the low chlorophyll regions are considerably
lower than their estimates, consistent with the differences observed
in Fig. 11. In Fig. 15 (left panel), the dispersion in bbp(551) is shown
to be evenly distributed around a continually increasing [Chl]. Note
the relatively wide scatter, roughly a factor of 10 around the trend
line.

An algorithm for CDM is not as easily formulated and we cannot
provide an analytical description of g2(AS); however, we present here
a tentative algorithm for completeness. The mean relationship
between [Chl] and CDM has recently been described for the BIOSOPE
region by Morel et al. (2007a). Even more recently, Morel (in press)
found the following relationship (M08 on Fig. 13A) from an analysis of
Case 1 waters:

afitCDOM Chl½ �; λð Þ ¼ 0:0649½Chl�0:63exp −s chl½ � λ − 400½ �� � ð9Þ

where we used s[chl]=0.018 nm−1 to transfer from 400 to 412 nm
for this study. From the IOCCG dataset, by restricting the fit to
−0.2b488
412ASb0.2, and thus removing outlier Case 2 waters, we find the

following relationship (best fit on Fig. 13A):

afitCDOM Chl½ �; λð Þ ¼ 0:117 Chl½ �0:774 ð9aÞ

To describe a simple algorithm for CDM absorption, we can use
either Eqs. (9) or (9a) in place of g1(AS) in Eq. (5) and add

g2 ASð Þ ¼ −γ
412
488AS g1 Chl½ �ð Þ þ aw 412ð Þð Þ

412
488R̂Lw

¼ −γ
412
488AS afitCDOM Chl½ �;412ð Þ þ aw 412ð Þ

� �
412
488R̂Lw

ð10Þ

where γ is a proportionality constant (see below) and aw(412)=
0.00452 m−1 is the absorption coefficient for pure water (Pope and
Fry,1997) at 412nm.Note that thenegative sign in frontof the righthand
side of Eq. (10) accounts for the fact that an increase in CDM leads to
negative 488

412 AS. This algorithm should be refined as more in situ data
becomes available. In particular,moreworkwill be required to constrain
the value of γ. A step-by-step description is provided in Appendix 3.



Fig. 12. Differences between bbp and the best fit line as a function of longitude along the
BIOSOPE cruise track. A) Difference of bbp retrieved from our algorithm and bbp

MM01

(satellite data in Fig. 11C minus results of Eqs. (6) and (7) when the OC3M algorithm is
used for [Chl]). B) Same as panel A except that the data are only from the Hydroscat
instrument (analogous to subtracting the black line in Fig. 11B from the colored points,
but for the data from the waveband at 550 nm). The best fit lines are fifth order
polynomials to the data points in each panel to illustrate the trends in the anomalies.
The best fit for the lower panel (Hydroscat data) is also shown in the upper panel, and
vice versa, for comparison.

Fig. 13. Evaluation of the CDM algorithm with the IOCCG dataset. A) Measured aCDM
(412) as a function of in situ [Chl] measured by HPLC or fluorometrically. The black line
is the best fit to the data for which −0.2b488

412ASb0.2 (Eq. (9a)). The blue line corresponds
to Eq. (9). For all three panels, the points are colored according to 488

412AS. The RMSE and
R2 given in this panel are for the best fit model. B) Measured aCDM(412) as a function of
g1[Chl OC3M]). Here, g1[Chl OC3M]) is evaluated by using the [Chl] estimated from the
MODIS OC3M algorithm applied on the nLw(λ) measured in situ to evaluate the best fit
equation of panel A (Eq. (9a)). C) Measured aCDM(412) as a function of the estimated
aCDM(412) using the CDM algorithm (Eqs. (5), (9a) and (10)).
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A first test of the suitability of the algorithm is presented in Fig. 13.
We present this analysis as a proof of concept rather than as a rigorous
validation or evaluation of the algorithm because of the coastal bias in
the IOCCG dataset. This limitation is compounded by the fact that we
lose theMODIS-specificity of the algorithm (e.g. inherent corrections for
potential calibration and atmospheric correction biases) by using an in
situ dataset and not a “match-up dataset”. In panel A, the covariation
between [Chl] measured in situ and aCDM(412) is presented along with
the lines for Eqs. (9) and (9a). We note here that because of the mostly
coastal nature of the dataset, the departure of Eq. (9) from the dataset is
not surprising. For this “proof of concept”, we will use the best fit
(Eq. (9a)) for the rest of the analysis of the IOCCG dataset, but will keep
Eq. (9) for the global application of the algorithm. The second panel
shows the relationship between the measured aCDM(412) and the g1
([Chl]) term of the algorithm when [Chl] is estimated using the OC3M
algorithm applied to the in situ nLw dataset. We observe that the blue
and orange/red points corresponding respectively to low and high 488

412AS
(high and lowCDMto [Chl] ratios) are generally above andbelow the1:1
line. The third panel shows the complete algorithm with the g2(488412AS)
termadded. Avalueofγ=0.4wasused for g2(488412AS) andwas obtained by
optimizing the r2 and RMSE values in this panel. We observe an overall
tightening of the relationship (reflected in the r2 and RMSE when
compared with the other panels).

While the comparison is unfair, because we used the dataset to
fine-tune the algorithm (by changing γ) in this proof of concept, we
note that the RMSE obtained (which includes all 656 datapoints) is
better than those obtained by all semi-analytical models tested on the
same dataset (IOCCG, 2006). The RMSE using only the g1 term com-
pares well with the best semi-analytical models. At the very least, this
shows that there is information in the reflectance spectra that is not
fully exploited by semi-analytical models.

For this preliminary analysis, we present the global distribution
obtained with this algorithm in Fig. 14 (right column). We remind the
reader that Eq. (9) has been used here instead of Eq. (9a) (Eq. (9a) was
used in Fig.13) as it was developed for Case 1waters. For this analysis we
have set the γ constant in the g2(488412AS) term to 1. This value provides a
dispersion around the mean trend that appears “more reasonable” than
using γ=0.4 which provides very little variability (which could have
arisen due to the coastal nature of the dataset). These distributions are
consistent with the findings of other remote sensing algorithms (Siegel



Fig. 14. Global estimates of IOPs. Left column shows bbp (log10[bbp(551)]; bbp(551) in m−1). Right column shows aCDM (log10[aCDM(412)]; aCDM(412) in m−1). From top to bottom,
monthly images for March, June, September and December for the year 2006.
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et al., 2002, 2005) aswell as our current knowledge of CDMdistributions.
We estimate high CDM values in coastal waters, in the Arctic Ocean, and
in the plumes from major rivers such as the Orinoco and Amazon;
however, the absolute values of these results remain tentative. Fig. 15
(right panel) illustrates the relationship between aCDM(412) and [Chl]
for the month of March 2006 (some variability arises through the year,
not shown). It clearly shows the effect of the mean trend with [Chl] on
which is superimposed a fair amount of variability. Clearly, the trend
with [Chl] has the strongest effects on this algorithm as reflected in the
maps in Fig. 14. The dispersion is, however, directly proportional to the
constant used in the g2 term (i.e. γ=1), and as such remains unverified.
3.4.5. Algal groups and IOPs
Our analysis suggests that the strongest influences on ocean color

anomalies are particulate backscattering and the proportion of CDM
to chlorophyll. Alvain and colleagues (2005, 2008) also calculate
similar anomalies but their objective is to show that spectral changes
in nLw are related to phytoplankton accessory pigments and then use
the anomalies to identify phytoplankton groups using ocean color.
They do not attempt to identify the sources of the anomalies. In
general, our statistical and modeling studies (Figs. 3 and 4) suggest
that the differences amongst their criteria (their Table 5 in the 2005
publication; compare also Fig. 2 in Alvain et al. 2008, with Figs. 3C and



Fig. 15. Estimated relationships for the backscattering coefficient at 551 nm (left panel) and CDM absorption coefficient at 412 nm (right panel) as a function of [Chl] for the month of
March 2006. Warmer colors indicate a higher density of points. The black lines correspond to the respective Case 1 representations for bbp(551) and aCDM(412) (Eqs. (6), (7) and (9)).
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4A herein) are primarily due to backscattering anomalies, and to a
lesser extent to CDM. For example, their criteria for classifying nLw
anomalies as diatoms appears to be a description of waters with
relatively high backscattering relative to the global mean. The
criterion for their haptophyte category (renamed nanoeukaryotes in
the 2008 paper) is a description of waters with lower backscattering.
Consequently, we note that our maps for the bbp anomaly (Fig. 6, left
column) are almost identical to their global maps of phytoplankton
assemblages (Fig. 6 in Alvain et al., 2005). Our interpretation in terms
of backscattering and CDM may also explain the biases arising in
empirical ocean color algorithms (Alvain et al., 2006) when species are
used as classifiers. A possible reconciliation of the two interpretations
could be imagined under two hypothetical scenarios: 1) if specific
phytoplankton groups influence or dictate the bio-optical conditions
(mostly backscattering), or 2) if the groups are associated with – but
do not cause – specific optical conditions. Both hypotheses remain
untested and are difficult to test with current datasets.

4. Summary and conclusion

For Case 1waters, unique relationships have been defined between
[Chl] and ocean color (O'Reilly et al., 1998; Morel and Maritorena
2001) as well as other optical properties (Bricaud et al., 1995; Loisel
andMorel 1998; Morel and Loisel 1998). These empirical models were
developed from extensive measurements; however, it is well re-
cognized that dispersion occurs around the mean trends for all of
these relationships. We identify in this paper the main sources of
second order variability in ocean color and provide a method for
observing their global distribution.

According to our study, the two principal types of second order
variability viewed from space are: 1) nLw anomalies due to
particulate backscattering; and 2) nLw band ratio anomalies
associated with the proportion of CDM relative to phytoplankton.
We show that strong seasonal and regional trends are associated
with these anomalies, which can lead to systematic biases in
operational algorithms for estimating [Chl]. Several important
advantages of using an empirical approach are that the effects of
Raman scattering, absorption and backscatter by pure water, and
optical constants (e.g. f/Q) are inherently accounted for, thus
avoiding the use of various approximations. In addition, our
empirical approach is much less sensitive to problems of sensor
calibration compared to semi-analytical approaches that use nLw
because we use differences from the global mean nLw, which are
themselves influenced (or biased) by these same calibration errors.
The method also avoids the effects of any systematic errors in the
satellite data with [Chl] or MBR because these biases are subtracted
when the global mean of nLw is removed. This empirical method
for observing ocean color anomalies is an independent approach
suitable for comparisons with semi-analytical models. Further
identification of the oceanographic and biogeochemical sources of
the anomalies is complex and beyond the scope of the present
study.

By focusing on the origin and global distribution of ocean color
anomalies, we develop a useful observational tool for characterizing
the marine optical environment. This is also an essential first step for
hypotheses concerning secondary correlations between ocean color
anomalies and other properties, such as phytoplankton groups.
Regional studies that allow intensive in situ validation are a promising
avenue for further testing the use of second order variability in ocean
color remote sensing.
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Appendix 1. Modeling study

Our standard representation of Case 1 waters is based on the
model described by Morel and Maritorena (2001), Morel and Gentili
(2004), and Morel et al. (2007b). As shown schematically in Table A1,
the first step is to develop an empirical chlorophyll algorithm that
is consistent with this model. To achieve this aim, a series of [Chl]
from 0.03 to 3 mg m−3 is inserted into the model described by
Morel and Maritorena (2001), using the new parameterization for



Table A1
Steps to obtain the simulated anomaly spectra

Step 1: An empirical algorithm for [Chl] vs. MBR that is consistent with MM01v07.
[Chl] series⇒MM01v07→anw(λ), bbp(λ)⇒Hydrolight→series of nLw(λ)
functional representation of max[nLw(443),nLw(488)] /nLw(551) vs. [Chl]→HOC3
Step 2: Sensitivity analysis conducted using Hydrolight by varying the standard IOPs of
MM01v07 to obtain anomalous nLw spectra.

Chl½ � ¼ 0:03;0:12;0:21;0:5 Z MM01v07
A

anw λð Þ; bbp λð Þmodified to
anw λð ÞFaCDM λð Þ; bbp λð Þ
anw λð Þ; bbp λð ÞFΔbbp
anw λð Þ; bbp λð ÞFslope

8<
:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

HydrolightY8 nLwvar(λ)
Step 3: Obtaining nLw spectra for the [Chl] (or MBR) that would be retrieved from an
empirical chlorophyll algorithm using the anomaly spectra.
8 nLwvar(λ)⇒HOC3→ [Chl]⇒MM01v07→anw(λ), bbp(λ)⇒Hydrolight→8 nLwstd(λ)
Step 4: Obtaining simulated anomaly spectra, ASsim, equivalent to those derived from
satellite data.
ASksim=nLwvar−nLwstd

j
iASsim= j

iRvar− j
iRstd where j

iR is a spectral ratio of nLw

The single arrow (→) indicates an “output”. The double arrow (⇒) means “inserted
into”. See text for further details.

4201C.A. Brown et al. / Remote Sensing of Environment 112 (2008) 4186–4203
Kd(λ) vs. [Chl] from Morel et al. 2007a (we refer to this model as
MM01v07). This provides us with total non-water absorption (anw)
and backscattering (bbp) coefficients (i.e. the inherent optical
properties or IOPs). These IOPs are then inserted into a radiative
transfer model (Hydrolight, Sequoia Scientific, Inc.) to calculate nLw.
The phase functions used are parameterized as in Morel et al.
(2002). A functional representation of this set of [Chl] vs. nLw ratios
constitutes our “standard chlorophyll algorithm” (herein referred to
as the “Hydrolight Ocean Color three-band algorithm” or HOC3).
While HOC3 differs slightly from the algorithms proposed in Morel
et al. (2007b), it allows us to obtain the [Chl] that would be returned
by an empirical algorithm for any MBR (e.g. similar to OC3M). We
can thus create an nLw spectrum using a radiative transfer model
with any set of IOPs and obtain its [Chl]. This [Chl] can in turn be
input into MM01v07 to obtain an nLw spectrum that is consistent
with the natural covariation of IOPs included within MM01v07. This
step provides two spectra with the same MBR but having otherwise
different shapes.

In the second step shown in Table A1, we perform a simple
sensitivity analysis by varying the input IOPs for a series of Hydrolight
simulations at four selected [Chl] (i.e. 0.03, 0.12, 0.21, 0.5 mgm−3) thus
modifying the standard IOPs that were used in MM01v07. We design
three cases, each with two sub-cases: 1) to examine the effect of CDM
absorption, we modify anw(λ) from MM01v07 by adding and
subtracting 0.5⁎anw(400)exp(−0.017⁎ (λ−400)); 2) to examine the
effect of the backscattering amplitude, we alter bbp by multiplying
and dividing the absolute value by 2; and 3) to examine the effect
of the backscattering shape, we change the slope parameter for
backscattering (v in MM01v07) by adding and subtracting 0.5 to this
value. These Hydrolight simulations provide eight new spectra, called
nLwvar (the subscript “var” stands for variations), which have slightly
different MBR (referred to as MBRvar) than those obtained using the
standard MM01v07 model. Additionally and in a similar fashion (not
shown in Table A1), to examine the effect of varying CDM slopes on the
anomalies, the same simulations as above for variable CDM are run
but with the slope of the CDM absorption changing from −0.017 to
successively: −0.008, −0.011, −0.14 and −0.20.

We now need an nLw reference spectrum with the same MBR as
MBRvar. As shown in the third step in Table A1, to obtain our reference
nLw, which is consistent with MM01v07, we calculate [Chl] from
MBRvar using HOC3, insert this [Chl] into MM01v07, and retrieve new
IOPs that are then inserted into Hydrolight to calculate the “standard”
spectrum (nLwstd) with anMBR equal to MBRvar. In the fourth step, we
calculate the difference between nLwvar (akin to nLw in satellite
imagery) and nLwstd (akin to the statistical average relationships
computed for nL̂w vs. MBR). In this way, the variable ASsimk simulates
the effect of a diversity of IOPs on the nLw anomalies associated with
our clusters. Similarly, ijASsim is calculated to simulate spectral ratios of
nLw. Note that ASsim cannot be normalized in ameaningful way aswas
done in the case of AS to obtain ASN, these simulations thus need to be
compared directly with unnormalized AS spectra.

Appendix 2. Verifying Eqs. (4) and (8)

The particulate backscattering (bbp) and non-water absorption
coefficients (anw) can be expressed as the sum of a mean value (b̄̄bp,
ā̄nw) at a givenMBR and a deviation from thatmean value (Δbbp,Δanw,)

bbp ¼ ―
bbp þ Δbbp

anw ¼ ―anw þ Δanw

Note that, here, all IOPs are at 551 nm. For a givenMBR, we can thus
express nLw551 as

nLw551 ¼ FoRf
Q

bbp þ bbw
anw þ aw

¼ C1
bbp þ bbw
anw þ aw

¼ C1

―
bbp þ Δbbp þ bbw
―anw þ Δanw þ aw

; ðA2Þ

where C1 ¼ FoRf=Q are optical constants (see Morel et al., 2002 for
definitions) and bbw and aw are respectively the backscattering and
absorption coefficients for water. In a similar manner, we can express
the result of the fit of nLw551 vs. MBR as

nL̂w551 ¼ FoR̂ f̂

Q̂

―
bbp þ bbw
―anw þ aw

¼ C2

―
bbp þ bbw
―anw þ aw

ðA3Þ

The anomaly spectrum for backscattering (AS551) is equal to:

AS551 ¼ nLw551−nL̂w551 ðA4Þ

Assuming that C1=C2 and thatΔanw is negligible relative to ā̄nw+aw
and substituting Eqs. (A2) and (A3) into Eq. (A4) we find:

AS551 ¼ C2
Δbbp

―anw þ aw
ðA5Þ

By, substituting Eqs. (A3) and (A5) into Eq. (8) and then into Eq. (4).
we find:

bbp ¼ f1 Chl½ �ð Þ þ Δbbp
―
bbp þ bbw

bMM01
bp þ bbw

� �

Finally, if we assume that f1([Chl])=bbpMM01 and bbp
MM01= b̄̄bp and

simplify, we obtain:

bbp ¼ bMM01
bp þ Δbbp:

Consequently, within the limit of our assumptions, Eqs. (4) and (8)
indeed estimate bbp, including the difference from the average
relationship.

Appendix 3. Step by step algorithms for bbp(551) and aCDM(412)

Algorithm for bbp(551)
1. Calculate MBR as MBR=max(551443RLw, 551448RLw).
2. Compute AS551 by subtracting from each nLw551 the oceanic

average nL̂w551 corresponding to its MBR using the following sixth
order polynomial (i.e. AS551=nLw551−nL̂w551):

nL̂w551 ¼ 0:7504−0:2779MBR þ 0:07443MBR2−0:01084MBR3

þ8:744� 10−4MBR4−3:609� 10−5MBR5 þ 5:702
�10−7MBR6
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Note that this relationship is specific toMODISAqua, for application
to another ocean color sensor it would be preferable to derive a new
relationship.

3. Compute [Chl] using the latest version of OC3M (or another
empirical band ratio algorithm of your choice).

4. Compute bbp(551) using Eq. (4) by replacing the term f1([Chl])
by the right side of Eq. (6) and f2(AS551) by the rightmost version of
Eq. (8).

Algorithm for aCDM(412)
1. Calculate MBR as MBR=max(551443RLw, 551448RLw).
2. Compute 488

412AS by subtracting from each 488
412RLw the oceanic

average 488
412R̂Lw (see Section 2.1.1 for definitions) corresponding to its

MBR using the following fifth order polynomial (i.e. 488
412AS=488

412RLw−
488
412R̂Lw):

412
488R̂Lw ¼ 0:1271þ 0:5300MBR−0:09602MBR2 þ 0:01111MBR3−4:620

� 10−4MBR4 þ 5:774� 10−5MBR5

Note that this relationship is specific toMODISAqua, for application
to another ocean color sensor it would be preferable to derive a new
relationship.

3. Compute [Chl] using the latest version of OC3M (or another
empirical band ratio algorithm of your choice).

4. Compute aCDM(412) using Eq. (5) by replacing the term g1([Chl])
by the right-hand-side side of Eq. (9) and g2(488412AS) by the last version of
Eq. (10) and using γ=1.
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