

DONNEES ADCP DU N/O ATALANTE

Année 2019

ADCP de coque OS-38 kHz et OS-150 kHz

SOMMAIRE

1	INTRODUCTION GENERALE	5
1.1	Récapitulatif des campagnes de L'Atalante 2019	5
1.2	Récapitulatif sur la qualité des données	6
1.3	Configuration des ADCP	7
1.4	Traitements effectués	7
1.5	Qualité des données reçues	8
1.6	Image des sections	9
2	TR_BRENMA (JANVIER A MARS) – OS150 - WT	10
2.1	Bathymétrie	10
2.2	Qualité des données reçues2.2.1CORR_ECI2.2.2CAP/ROULIS/TANGAGE	1′
2.3	Composantes parallèle et orthogonale	12
2.4	Invalidation entre deux ensembles	12
2.5	Matérialisation des périodes sans mesure	12
2.6	Correction de désalignement	12
2.7	Nettoyage des données	13
2.8	Exploitation des données – Tracés 2.8.1La marée 2.8.2Définition des sections 2.8.3Images des sections 2.8.4Tracés des vecteurs des sections	13 14 14
3	TONGA 2019 - OS38 - WT - FICHIERS DE 000 A 027	16
3.1	Bathymétrie	16
3.2	Qualité des données reçues	17
3.3	Composantes parallèle et orthogonale	18
3.4	Invalidation entre deux ensembles	18
3.5	Matérialisation des périodes sans mesure	18
3.6	Correction de désalignement	18
3.7	Nettoyage des données	19
3.8	Exploitation des données – Tracés3.8.1La marée	

	3.8.2Définition des sections	20
4	TONGA 2019 - OS38 - WT - FICHIERS DE 028 A 050	22
4.1	Bathymétrie	22
4.2	Qualité des données reçues	23
4.3	Composantes parallèle et orthogonale	24
4.4	Invalidation entre deux ensembles	24
4.5	Matérialisation des périodes sans mesure	24
4.6	Correction de désalignement	24
4.7	Nettoyage des données	25
4.8	Exploitation des données – Tracés	25 26 26
5 SANS	TONGA 2019 - OS150 - WT - FICHIERS DE 000 A 0 LE FICHIER 012	28
5.1	Bathymétrie	
5.2	Qualité des données reçues	29
5.3	Composantes parallèle et orthogonale	30
5.4	Invalidation entre deux ensembles	30
5.5	Matérialisation des périodes sans mesure	30
5.6	Correction de désalignement	30
5.7	Nettoyage des données	31
5.8	Exploitation des données – Tracés	31 32 32
6 056	TONGA 2019 - OS150 - WT - FICHIERS 012 ET DE 029) A
6.1	Bathymétrie	34
6.2	Qualité des données reçues	35

6.3	Composantes parallèle et orthogonale	. 36
6.4	Invalidation entre deux ensembles	. 36
6.5	Matérialisation des périodes sans mesure	. 36
6.6	Correction de désalignement	. 36
6.7	Nettoyage des données	. 37
6.8	Exploitation des données – Tracés	. 37
	6.8.1La marée	. 37
	6.8.2Définition des sections	. 38
	6.8.3Images des sections	. 38
	6.8.4Tracés des vecteurs des sections	. 39

1 Introduction générale

Ce document présente le traitement des données ADCP de coque, du navire Océanographique 'L'Atalante' pour les campagnes qui se sont déroulées en 2019.

Les données sont exploitées à l'aide du logiciel CASCADE V7.2 développé sous MATLAB par le LPO (C. Kermabon).

1.1 Récapitulatif des campagnes de L'Atalante 2019

Nom campagne	Type ADCP	Période	Zone
TR_BRENMA	OS150	29/01/2019	Atlantique et Pacifique
		19/03/2019	
TONGA 2019	OS150	31/10/2019	Pacifique Sud
		05/12/2019	
TONGA 2019	OS38	31/10/2019	Pacifique Sud
		05/12/2019	

Tableau 1 - Liste des campagnes présentes dans ce document

1.2 Récapitulatif sur la qualité des données

Nom campagne	Type ADCP	Période	Zone	Bonnes (%)	Absentes (%)	Sous fond (%)	Portée max (m)
TR_BRENMA	OS150 WT	Janvier Février Mars	Atlantique Pacifique	44.59	42.41	2.22	300
TONGA2019	OS150 Fic 00 à 028 sans le fichier 012	Oct Nov Dec	Pacifique Sud	29.19	64.36	0.88	200
TONGA2019	OS150 Fic 12 et de 29 à 56	Oct Nov Dec	Pacifique Sud	38.71	52.09	0.98	200
TONGA2019	OS38 Fic 000 à 027	Oct Nov Dec	Pacifique Sud	51.42	20.34	17.52	1500
TONGA2019	OS38 Fic 028 à 050	Oct Nov Dec	Pacifique Sud	71.59	6.21	8.24	1400

Tableau 2 : Qualité des données présentes dans ce document

1.3 Configuration des ADCP

La configuration de l'ADCP OS38 est donnée dans le tableau 1 et celle de l'ADCP OS 150 dans le tableau 2.

Angle des faisceaux par rapport à la verticale	
Fréquence	38 kHz
Système	OS (Ocean Surveyor)
Gamme de vitesse	High
Orientation	
Configuration des faisceaux	
Angle de l'ADCP avec l'axe du navire	45 degrés
Longueur des cellules	24 mètres (grands fonds)
	16 mètres (côtier)
Nombre de cellules par ping	70
Ping par ensemble	

Tableau 3- Configuration de l'ADCP OS 38 KHz

Angle des faisceaux par rapport à la verticale	
Fréquence	150 kHz
Système	OS (Ocean Surveyor)
Gamme de vitesse	High
Orientation	
Configuration des faisceaux	
Angle de l'ADCP avec l'axe du navire	45 degrés
Longueur des cellules	8 mètres (grands fonds)
	4 mètres (côtier)
Nombre de cellules par ping	75
Ping par ensemble	

Tableau 4 - Configuration de l'ADCP OS 150 KHz

1.4 Traitements effectués

Les traitements ont été réalisés avec le logiciel CASCADE_EXPLOIT et se décomposent en cinq étapes principales:

- 1. Création d'un fichier campagne unique au format NetCDF à la norme OceanSite.
- 2. Nettoyage du fichier = les données mesurées sont affectées d'un indicateur qualité dont les valeurs sont présentées dans le tableau 3.
- 3. Ajout de la marée
- 4. Création de sections et/ou de stations et génération des images et des tracés de vecteurs pour les sections et/ou les stations définies.
- 5. Application d'un filtre linéaire

Sur les appareils de type OS, il ne sert à rien d'essayer d'obtenir un Wmoyen proche de 0.

Les valeurs indiquées dans les tableaux de résultats de ce rapport sont donc les valeurs obtenues sans correction de l'assiette.

Flag	Signification	Variable
		associée
1	Données bonnes	
2	Données douteuses (données relatives aux cellules dont l'une	Vdifflim
	des composantes horizontales (U et V) diffère trop des 5 voisins	fact_sis
	horizontaux et verticaux ou points isolés) Lorsque plus de 50%	cis_max_u
	de la couche de référence est flaguée incorrecte (à 2 ou plus)	
	tout le profil sous le premier point douteux est flagué à 2	
3	Données mauvaises Filtre médian sur 30 (N_fl3) ensembles au-	N_fl3
	delà de 2.7 (X_fl3) écarts-types.	X_fl3
4	Cellules dont l'une des composantes horizontales a un	cis_max
	cisaillement vertical différentiel > 0.3 (X) cm/s. L'histogramme	
	des cisaillements tracé en début de nettoyage permet de	
	déterminer la valeur X.	
5	Cellules dont la vitesse verticale du courant et/ou erms > 30 (X)	w_max
	cm/s ou erreur	
6	Cellules dont l'une des vitesses absolues horizontales (U ou V)	v_max
	> 4 (X) m/s	
7	Données absentes	
8	Données sous le fond en fonction du Bottom Ping (ADCP) ou	
	de la Bathymétrie	
9	Données invalidées entre 2 dates ou entre 2 ensembles par	
	l'utilisateur	
10	Données sous le fond en fonction de la détection amplitude,	
	intensité écho	

Tableau 5 – Valeurs des flags qualité (les valeurs en gras peuvent être modifiées par l'utilisateur)

1.5 Qualité des données reçues

Un premier aperçu de la qualité des données est fourni par l'indicateur de corrélation entre le signal émis et le signal reçu. Plus ces 2 signaux sont corrélés (>150), meilleure est la mesure.

L'intensité de l'écho rétro diffusé est une caractéristique de la qualité de la diffusion.

Les graphes de CORR et ECI seront présentés pour chaque campagne.

Un fichier de bathymétrie est associé à chaque campagne. Ceci permet d'enlever les points que la bathymétrie a considérés comme étant sous le fond. Dans les graphes représentant la qualité des données (CORR et ECI), on peut apercevoir la bathymétrie sous forme de trait noir sous lequel les données ne seront pas prises en compte.

La qualité des données est également représentée par le graphe CAP/ROULIS/TANGAGE.

1.6 Image des sections

Pour chacune des sections, 2 graphes sont présentés :

- U = composante Est-Ouest du courant (>0, vers l'Est)
- V = Composante Nord-Sud du courant (>0 vers le Nord)

0

2 TR_BRENMA (Janvier à Mars) - OS150 - WT

Ce transit comprend 39 fichiers STA en WT et 1 en BT. Les fichiers ne pouvant pas être mélangés seuls sont traités les fichiers en WT.

Le trajet du navire est le suivant :

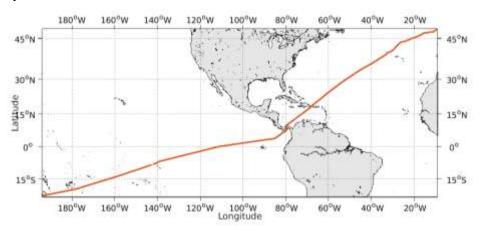


Figure 1-Route du navire durant la campagne

2.1 Bathymétrie

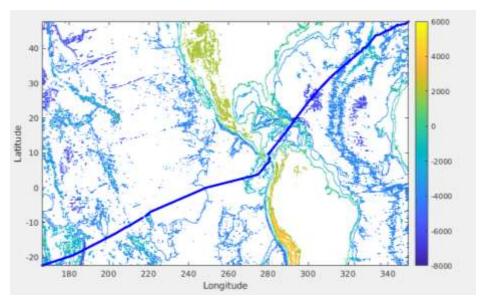


Figure 2 – Bathymétrie GEBCO sur le trajet de la campagne

2.2 Qualité des données reçues

2.2.1 CORR_ECI

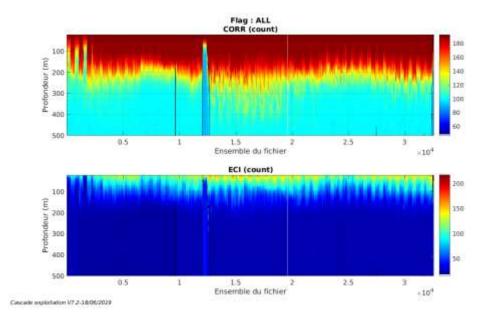
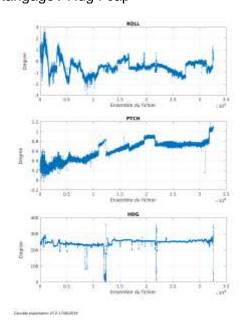



Figure 3 – Indicateur de corrélation (graphe haut) et intensité de l'écho rétro-diffusé (graphe bas) pour tous les flags qualité

2.2.2 CAP/ROULIS/TANGAGE

Roll: roulis / Ptch: tangage / Hdg: cap

2.3 Composantes parallèle et orthogonale

Les informations sur les composantes parallèle et orthogonale à la vitesse du navire sont :

	0 (1 (1 14)	0 (1 (1 14
	Correlation Min	Corrélation Max
Composante parallèle	-0.567	-0.151
Composante orthogonale	-0.285	0.195

Tableau 6-Composantes parallèle et orthogonale

2.4 Invalidation entre deux ensembles

Pas d'objet.

2.5 Matérialisation des périodes sans mesure

Sur une période de 20 minutes entre deux ensembles.

2.6 Correction de désalignement

Le calcul Amplitude / désalignement / assiette nous informe que des changements sont possibles pour faire un désalignement.

Valeurs rentrées au moment du désalignement :

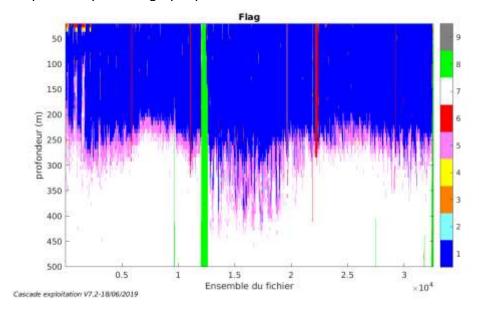
Angle de désalignement	0
Amplitude	0.987
Erreur sur le tangage	0.19

La vitesse Verticale moyenne issue du désalignement pour les bonnes données (Bins [24-28]) est de -0.339 cm/s.

Suite à ce désalignement les actions suivantes sont faites sur le nouveau fichier :

- Nettoyage des données
- Matérialisation des périodes sans mesure
- Tracés des graphes 2D.

Les graphes et les valeurs des tableaux suivants sont donc issus du fichier après désalignement.



2.7 Nettoyage des données

Critères des flags et résultats chiffrés obtenus :

Flag	Signification	Nombre	%
	_	d'ensembles	
1	Bonnes données	873218	44.59
2	Données douteuses	5939	0.30
3	Filtre médian sur 30 ensembles au-delà de 2.70 écarts-type	7685	0.39
4	Pour cisaillement > 0.1 s-1	1540	0.08
5	Pour erreur > 0.200 m/s et pgood < 10%	178245	9.10
6	u, v > 2 m/s	17471	0.89
7	Données absentes	830565	42.47
8	Données sous le fond	43557	2.22
9	Données invalidées entre 2 dates ou 2 ensembles	0	0

Ce qui correspond au graphique suivant :

2.8 Exploitation des données - Tracés

2.8.1 La marée

Les composantes de la marée ont été prises en compte lors du calcul des vitesses du courant (model_tpxo9.0).

2.8.2 Définition des sections

Au cours de cette campagne, 1 section a été définie :

N°	Date début	Date fin	Localisation
1	31/01/2019 080307	18/03/2019 233808	Atlantique - Pacifique

Tableau 7- Date et localisation des sections de la campagne

La carte est la suivante :

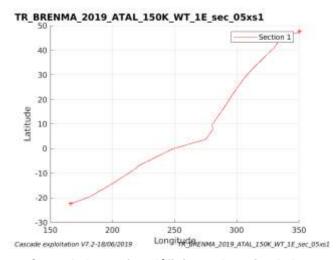


Figure 4- Carte de la section définie sur le trajet de la campagne

2.8.3 Images des sections

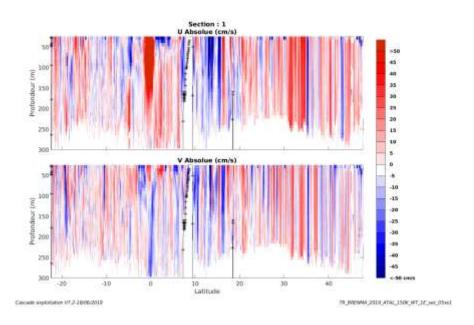


Figure 5 - Composantes du courant - Section 1 de la campagne de 0 à 300 m

2.8.4 Tracés des vecteurs des sections

Les tracés de vecteurs sont réalisés avec une distance entre chaque point égale à 5 kms. Les tranches 0-100m, 100_300m sont tracées dans ce document.

Le facteur d'échelle est de 0.1 et 1 point sur 3 sont tracés.

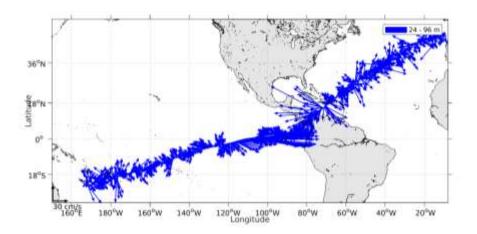


Figure 6- Vecteurs du courant de 0 à 100m

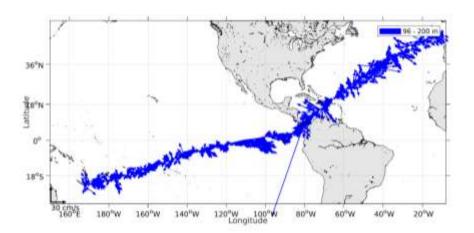


Figure 7- Vecteurs du courant de 100 à 200m

3 TONGA 2019 - OS38 - WT - fichiers de 000 à 027

Cette campagne comprend 51 fichiers mais une découpe a été nécessaire car la taille des cellules n'est pas identique pour l'ensemble des fichiers. En effet, les fichiers 000 à 027 ont une taille de cellule de 24 m alors que les fichiers 028 à 050 ont une taille de cellule de 16 m. Le logiciel CASCADE n'étant pas en mesure de traiter des données dont la taille des cellules n'est pas identique, deux traitements sont donc nécessaires pour cette campagne.

Les fichiers sont tous en mode WT.

Le trajet du navire est le suivant :

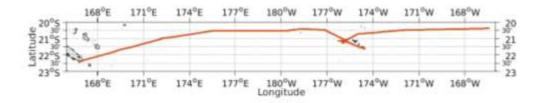


Figure 8 - Route du navire durant la campagne

3.1 Bathymétrie

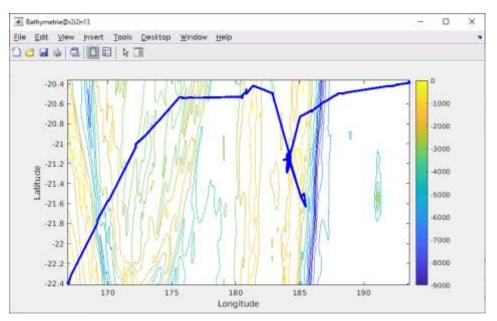


Figure 9 - Bathymétrie GEBCO sur le trajet de la campagne

3.2 Qualité des données reçues

3.2.1 CORR_ECI

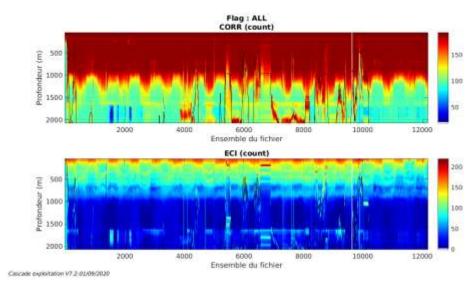
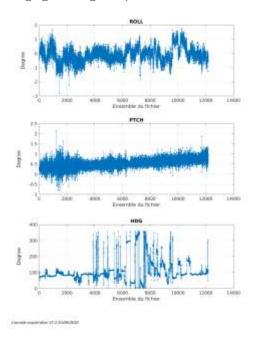



Figure 10 – Indicateur de corrélation (graphe haut) et intensité de l'écho rétro-diffusé (graphe bas) pour tous les flags qualité

3.2.2 CAP/ROULIS/TANGAGE

Roll: roulis / Ptch: tangage / Hdg: cap

3.3 Composantes parallèle et orthogonale

Les informations sur les composantes parallèle et orthogonale à la vitesse du navire sont :

	Corrélation Min	Corrélation Max
Composante parallèle	-0.139	0.428
Composante orthogonale	-0297	0.284

Tableau 8-Composantes parallèle et orthogonale

3.4 Invalidation entre deux ensembles

Pas d'objet.

3.5 Matérialisation des périodes sans mesure

Sur une période de 20 minutes entre deux ensembles.

3.6 Correction de désalignement

Le calcul Amplitude / désalignement / assiette nous informe que des changements sont possibles pour faire un désalignement.

Valeurs rentrées au moment du désalignement :

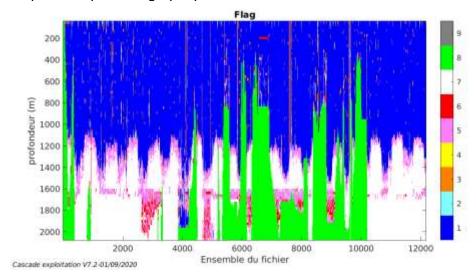
Angle de désalignement	0
Amplitude	1
Erreur sur le tangage	-0.58

La vitesse Verticale moyenne issue du désalignement pour les bonnes données (Bins [39 43]) est de 0.217 cm/s.

Suite à ce désalignement les actions suivantes sont faites sur le nouveau fichier :

- Nettoyage des données
- Matérialisation des périodes sans mesure
- Tracés des graphes 2D.

Les graphes et les valeurs des tableaux suivants sont donc issus du fichier après désalignement.



3.7 Nettoyage des données

Critères des flags et résultats chiffrés obtenus :

Flag	Signification	Nombre	%
	_	d'ensembles	
1	Bonnes données	534208	51.42
2	Données douteuses	11403	1.10
3	Filtre médian sur 30 ensembles au-delà de 2.70 écarts-type	29395	2.83
4	Pour cisaillement > 0.1 s-1	368	0.04
5	Pour erreur > 0.200 m/s et pgood < 10%	60670	5.84
6	u, v > 2 m/s	9550	0.92
7	Données absentes	211272	20.34
8	Données sous le fond	182004	17.52
9	Données invalidées entre 2 dates ou 2 ensembles	0	0

Ce qui correspond au graphique suivant :

3.8 Exploitation des données - Tracés

3.8.1 La marée

Les composantes de la marée ont été prises en compte lors du calcul des vitesses du courant (model_tpxo9.0).

3.8.2 Définition des sections

Au cours de cette campagne, 1 section a été définie :

N°	Date début	Date fin	Localisation
1	01112019 062507	18112019 185651	Océan pacifique

Tableau 9- Date et localisation des sections de la campagne

La carte est la suivante :

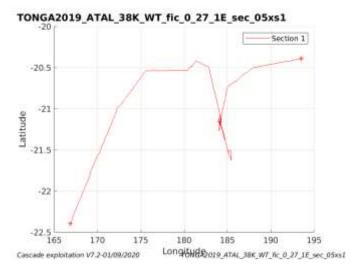


Figure 11- Carte de la section définie sur le trajet de la campagne

3.8.3 Images des sections

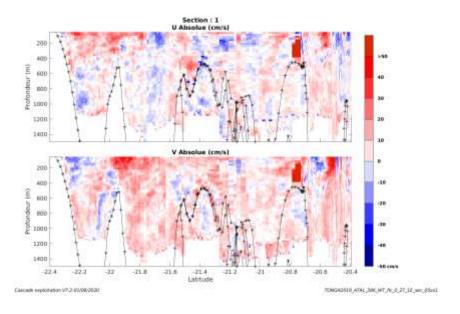


Figure 12 - Composantes du courant - Section 1 de la campagne de 0 à 1500 m

3.8.4 Tracés des vecteurs des sections

Les tracés de vecteurs sont réalisés avec une distance entre chaque point égale à 5 kms. Les tranches 0-100m, 100_300m sont tracées dans ce document.

Le facteur d'échelle est de 0.1 et tous les points sont tracés.

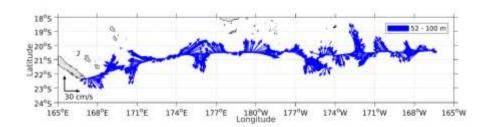


Figure 13- Vecteurs du courant de 0 à 100m

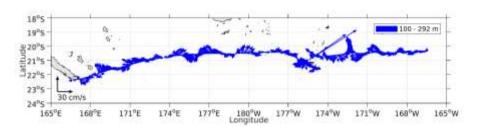


Figure 14- Vecteurs du courant de 100 à 300m

4 TONGA 2019 - OS38 - WT - fichiers de 028 à 050

Cette campagne comprend 51 fichiers mais une découpe a été nécessaire car la taille des cellules n'est pas identique pour l'ensemble des fichiers. En effet, les fichiers 000 à 027 ont une taille de cellule de 24 m alors que les fichiers 028 à 050 ont une taille de cellule de 16 m. Le logiciel CASCADE n'étant pas en mesure de traiter des données dont la taille des cellules n'est pas identique, deux traitements sont donc nécessaires pour cette campagne.

Les fichiers sont tous en mode WT.

Le trajet du navire est le suivant :

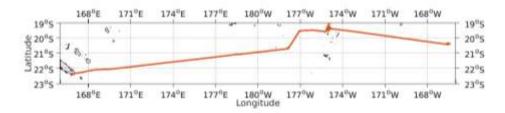


Figure 15 - Route du navire durant la campagne

4.1 Bathymétrie

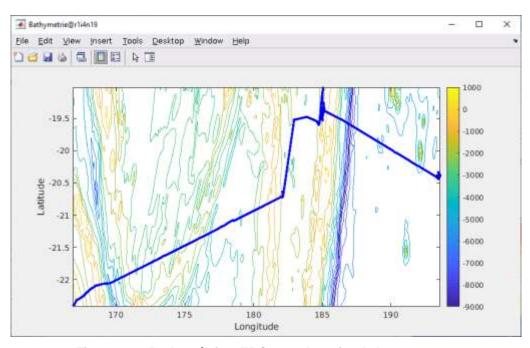


Figure 16 – Bathymétrie GEBCO sur le trajet de la campagne

4.2 Qualité des données reçues

4.2.1 CORR_ECI

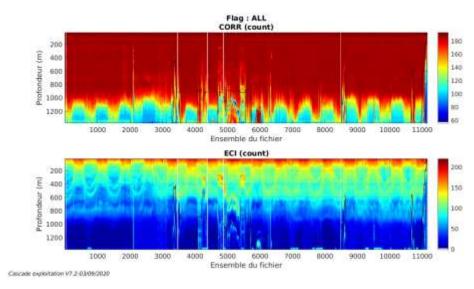
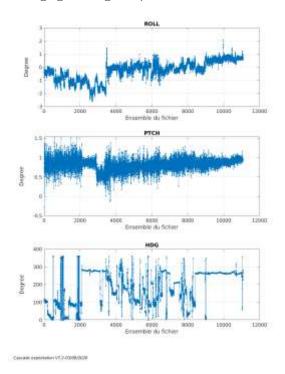



Figure 17 – Indicateur de corrélation (graphe haut) et intensité de l'écho rétro-diffusé (graphe bas) pour tous les flags qualité

4.2.2 CAP/ROULIS/TANGAGE

Roll: roulis / Ptch: tangage / Hdg: cap

4.3 Composantes parallèle et orthogonale

Les informations sur les composantes parallèle et orthogonale à la vitesse du navire sont :

	Corrélation Min	Corrélation Max
Composante parallèle	-0.485	0.090
Composante orthogonale	-0.544	0.009

Tableau 10-Composantes parallèle et orthogonale

4.4 Invalidation entre deux ensembles

Pas d'objet.

4.5 Matérialisation des périodes sans mesure

Sur une période de 20 minutes entre deux ensembles.

4.6 Correction de désalignement

Le calcul Amplitude / désalignement / assiette nous informe que des changements sont possibles pour faire un désalignement.

Valeurs rentrées au moment du désalignement :

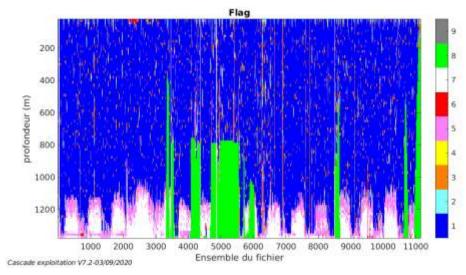
Angle de désalignement	0
Amplitude	1
Erreur sur le tangage	-0.72

La vitesse Verticale moyenne issue du désalignement pour les bonnes données (Bins [32 36]) est de 0.063 cm/s.

Suite à ce désalignement les actions suivantes sont faites sur le nouveau fichier :

- Nettoyage des données
- Matérialisation des périodes sans mesure
- Tracés des graphes 2D.

Les graphes et les valeurs des tableaux suivants sont donc issus du fichier après désalignement.



4.7 Nettoyage des données

Critères des flags et résultats chiffrés obtenus :

Flag	Signification	Nombre	%
	_	d'ensembles	
1	Bonnes données	678955	71.59
2	Données douteuses	21271	2.24
3	Filtre médian sur 30 ensembles	56098	5.92
	au-delà de 2.70 écarts-type		
4	Pour cisaillement > 0.1 s-1	134	0.01
5	Pour erreur > 0.200 m/s et pgood	53231	5.61
	< 10%		
6	u, v > 2 m/s	1593	0.17
7	Données absentes	58926	6.21
8	Données sous le fond	78137	8.24
9	Données invalidées entre 2 dates		
	ou 2 ensembles		

Ce qui correspond au graphique suivant :

4.8 Exploitation des données - Tracés

4.8.1 La marée

Les composantes de la marée ont été prises en compte lors du calcul des vitesses du courant (model_tpxo9.0).

4.8.2 Définition des sections

Au cours de cette campagne, 1 section a été définie :

N°	Date début	Date fin	Localisation
1	18112019 195259	04122019 193832	Océan pacifique

Tableau 11- Date et localisation des sections de la campagne

La carte est la suivante :

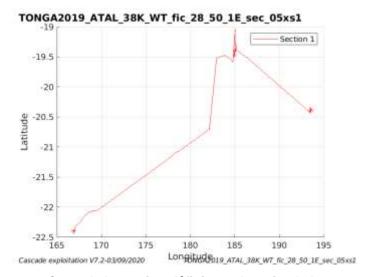


Figure 18- Carte de la section définie sur le trajet de la campagne

4.8.3 Images des sections

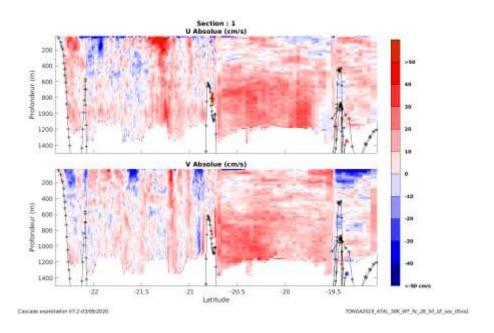


Figure 19 - Composantes du courant - Section 1 de la campagne de 0 à 1500 m

4.8.4 Tracés des vecteurs des sections

Les tracés de vecteurs sont réalisés avec une distance entre chaque point égale à 5 kms. Les tranches 0-100m, 100_300m sont tracées dans ce document.

Le facteur d'échelle est de 0.1 et tous les points sont tracés.

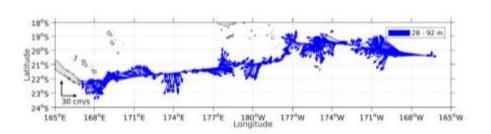


Figure 20- Vecteurs du courant de 0 à 100m

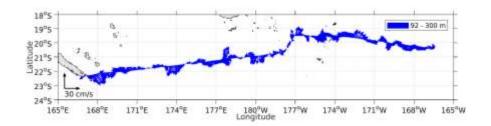


Figure 21- Vecteurs du courant de 100 à 300m

5 TONGA 2019 - OS150 - WT - fichiers de 000 à 028 sans le fichier 012

Cette campagne comprend 57 fichiers mais une découpe a été nécessaire car la taille des cellules n'est pas identique pour l'ensemble des fichiers. En effet, les fichiers 000 à 028 ont une taille de cellule de 12 m alors que les fichiers 012 - 029 à 056 ont une taille de cellule de 8 m. Le logiciel CASCADE n'étant pas en mesure de traiter des données dont la taille des cellules n'est pas identique, deux traitements sont donc nécessaires pour cette campagne.

Les fichiers sont tous en mode WT.

Le trajet du navire est le suivant :

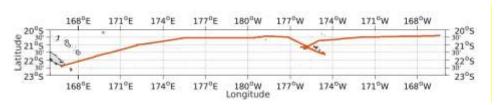


Figure 22- Route du navire durant la campagne

5.1 Bathymétrie

Figure 23 - Bathymétrie GEBCO sur le trajet de la campagne

5.2 Qualité des données reçues

5.2.1 CORR_ECI

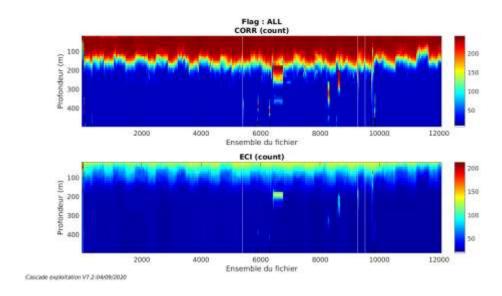
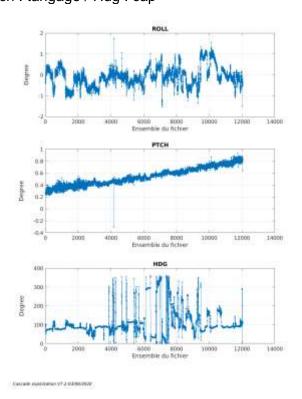



Figure 24 – Indicateur de corrélation (graphe haut) et intensité de l'écho rétro-diffusé (graphe bas) pour tous les flags qualité

5.2.2 CAP/ROULIS/TANGAGE

Roll: roulis / Ptch: tangage / Hdg: cap

5.3 Composantes parallèle et orthogonale

Les informations sur les composantes parallèle et orthogonale à la vitesse du navire sont :

	Corrélation Min	Corrélation Max
Composante parallèle	-0.234	0.400
Composante orthogonale	-0.298	0.341

Tableau 12-Composantes parallèle et orthogonale

5.4 Invalidation entre deux ensembles

Pas d'objet.

5.5 Matérialisation des périodes sans mesure

Sur une période de 20 minutes entre deux ensembles.

5.6 Correction de désalignement

Le calcul Amplitude / désalignement / assiette nous informe que des changements sont possibles pour faire un désalignement.

Valeurs rentrées au moment du désalignement :

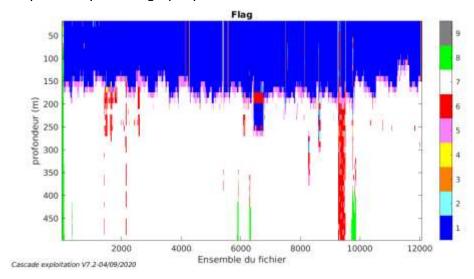
Angle de désalignement	0
Amplitude	1
Erreur sur le tangage	0.24

La vitesse Verticale moyenne issue du désalignement pour les bonnes données (Bins [7 11]) est de 0.009 cm/s.

Suite à ce désalignement les actions suivantes sont faites sur le nouveau fichier :

- Nettoyage des données
- Matérialisation des périodes sans mesure
- Tracés des graphes 2D.

Les graphes et les valeurs des tableaux suivants sont donc issus du fichier après désalignement.



5.7 Nettoyage des données

Critères des flags et résultats chiffrés obtenus :

Flag	Signification	Nombre	%
		d'ensembles	
1	Bonnes données	141072	29.19
2	Données douteuses	763	0.16
3	Filtre médian sur 30 ensembles au-delà de 2.70 écarts-type	2429	0.50
4	Pour cisaillement > 0.1 s-1	286	0.06
5	Pour erreur > 0.200 m/s et pgood < 10%	14154	2.93
6	u, v > 2 m/s	9303	1.92
7	Données absentes	311059	64.36
8	Données sous le fond	4254	0.88
9	Données invalidées entre 2 dates ou 2 ensembles		

Ce qui correspond au graphique suivant :

5.8 Exploitation des données - Tracés

5.8.1 La marée

Les composantes de la marée ont été prises en compte lors du calcul des vitesses du courant (model_tpxo9.0).

5.8.2 Définition des sections

Au cours de cette campagne, 1 section a été définie :

N°	Date début	Date fin	Localisation
1	01112019 062339	18112019 200443	Océan pacifique

Tableau 13- Date et localisation des sections de la campagne

La carte est la suivante :

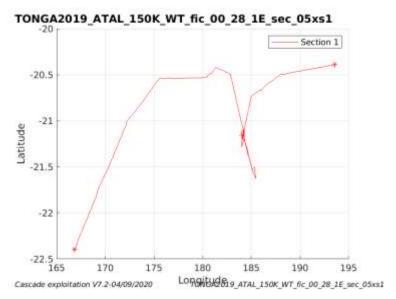


Figure 25- Carte de la section définie sur le trajet de la campagne

5.8.3 Images des sections

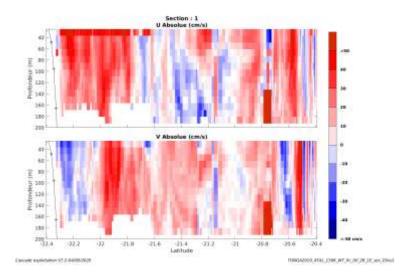


Figure 26 - Composantes du courant - Section 1 de la campagne de 0 à 200 m

5.8.4 Tracés des vecteurs des sections

Les tracés de vecteurs sont réalisés avec une distance entre chaque point égale à 5 kms. Les tranches 0-100m, 100_200m sont tracées dans ce document.

Le facteur d'échelle est de 0.1 et tous les points sont tracés.

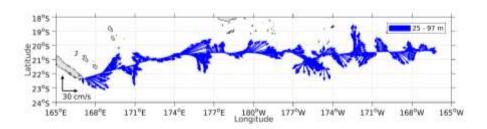


Figure 27- Vecteurs du courant de 0 à 100m

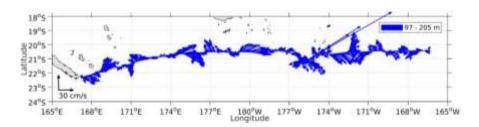


Figure 28- Vecteurs du courant de 100 à 200m

6 TONGA 2019 – OS150 – WT – fichiers 012 et de 029 à 056

Cette campagne comprend 57 fichiers mais une découpe a été nécessaire car la taille des cellules n'est pas identique pour l'ensemble des fichiers. En effet, les fichiers 000 à 028 ont une taille de cellule de 12 m alors que les fichiers 012 - 029 à 056 ont une taille de cellule de 8 m. Le logiciel CASCADE n'étant pas en mesure de traiter des données dont la taille des cellules n'est pas identique, deux traitements sont donc nécessaires pour cette campagne.

Les fichiers sont tous en mode WT.

Le trajet du navire est le suivant :

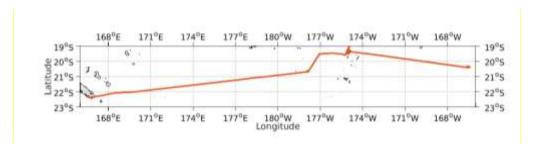


Figure 29 - Route du navire durant la campagne

6.1 Bathymétrie

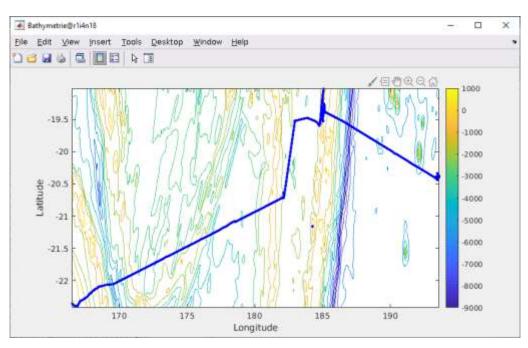


Figure 30 – Bathymétrie GEBCO sur le trajet de la campagne

6.2 Qualité des données reçues

6.2.1 CORR_ECI

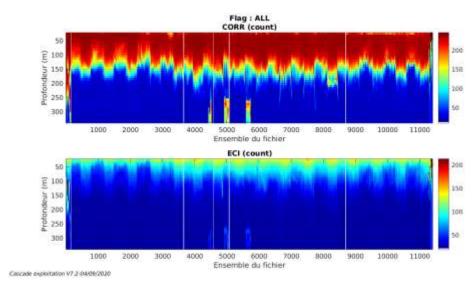
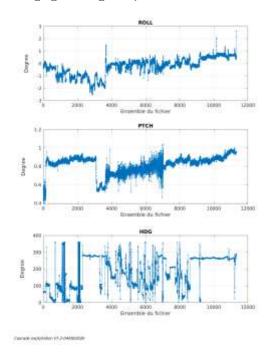



Figure 31 – Indicateur de corrélation (graphe haut) et intensité de l'écho rétro-diffusé (graphe bas) pour tous les flags qualité

6.2.2 CAP/ROULIS/TANGAGE

Roll: roulis / Ptch: tangage / Hdg: cap

6.3 Composantes parallèle et orthogonale

Les informations sur les composantes parallèle et orthogonale à la vitesse du navire sont :

	Corrélation Min	Corrélation Max
Composante parallèle	-0.125	0.623
Composante orthogonale	-0.446	0.359

Tableau 14-Composantes parallèle et orthogonale

6.4 Invalidation entre deux ensembles

Pas d'objet.

6.5 Matérialisation des périodes sans mesure

Sur une période de 20 minutes entre deux ensembles.

6.6 Correction de désalignement

Le calcul Amplitude / désalignement / assiette nous informe que des changements sont possibles pour faire un désalignement.

Valeurs rentrées au moment du désalignement :

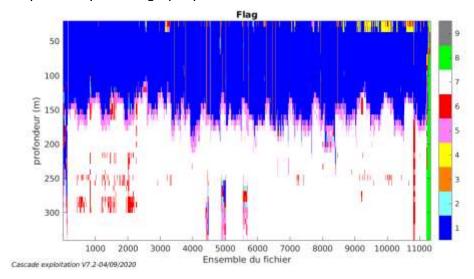
Angle de désalignement	0
Amplitude	0.977
Erreur sur le tangage	0.21

La vitesse Verticale moyenne issue du désalignement pour les bonnes données (Bins [13 17]) est de 0.136 cm/s.

Suite à ce désalignement les actions suivantes sont faites sur le nouveau fichier :

- Nettoyage des données
- Matérialisation des périodes sans mesure
- Tracés des graphes 2D.

Les graphes et les valeurs des tableaux suivants sont donc issus du fichier après désalignement.



6.7 Nettoyage des données

Critères des flags et résultats chiffrés obtenus :

Flag	Signification	Nombre	%
	_	d'ensembles	
1	Bonnes données	176526	38.71
2	Données douteuses	1627	0.36
3	Filtre médian sur 30 ensembles au-delà de 2.70 écarts-type	3854	0.85
4	Pour cisaillement > 0.1 s-1	2533	0.56
5	Pour erreur > 0.200 m/s et pgood < 10%	22444	4.92
6	u, v > 2 m/s	7058	1.55
7	Données absentes	237575	52.09
8	Données sous le fond	4463	0.98
9	Données invalidées entre 2 dates ou 2 ensembles		

Ce qui correspond au graphique suivant :

6.8 Exploitation des données - Tracés

6.8.1 La marée

Les composantes de la marée ont été prises en compte lors du calcul des vitesses du courant (model_tpxo9.0).

6.8.2 Définition des sections

Au cours de cette campagne, 1 section a été définie :

N°	Date début	Date fin	Localisation
1	09112019 034520	04122019 212726	Océan pacifique

Tableau 15- Date et localisation des sections de la campagne

La carte est la suivante :

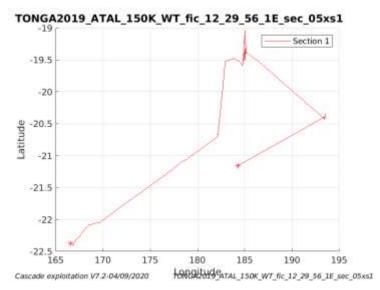


Figure 32- Carte de la section définie sur le trajet de la campagne

6.8.3 Images des sections

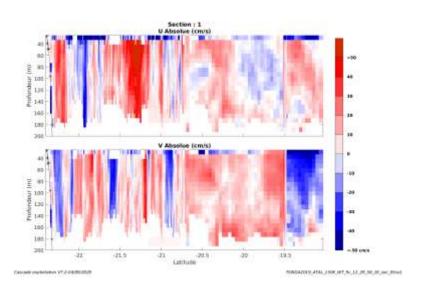


Figure 33 - Composantes du courant - Section 1 de la campagne de 0 à 200 m

6.8.4 Tracés des vecteurs des sections

Les tracés de vecteurs sont réalisés avec une distance entre chaque point égale à 5 kms. Les tranches 0-100m, 100_200m sont tracées dans ce document.

Le facteur d'échelle est de 0.1 et tous les points sont tracés.

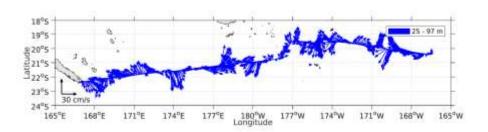


Figure 34- Vecteurs du courant de 0 à 100m

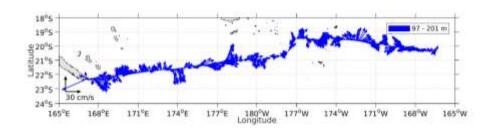


Figure 35- Vecteurs du courant de 100 à 200m