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Notes on the function gsw_thermobaric(SA, CT, p)  
Notes written 3rd April 2011  

 
This function, gsw_thermobaric calculates the thermobaric coefficient according to Eqn. 
(3.8.2) of the TEOS-10 manual (IOC et al. (2010)), namely  
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The input variables are Absolute Salinity AS , Conservative Temperature, and pressure.  
This function uses the 48-term expression for density, ( )Aˆ , ,S pρ Θ .  This 48-term rational 
function expression for density is discussed in McDougall et al. (2011) and in appendix 
A.30 and appendix K of the TEOS-10 Manual (IOC et al. (2010)).  For dynamical 
oceanography we may take the 48-term rational function expression for density as 
essentially reflecting the full accuracy of TEOS-10.   

A discussion of the thermobaric coefficient and the thermobaric process whereby 
epineutral diffusion causes dianeutral advection may be found in section 3.8 and appendix 
A.14 of the TEOS-10 manual, and these sections are repeated below.   
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Here follows section 3.8 and appendix A.14 of the TEOS-10 Manual (IOC et al. (2010)).   
 
 
 
3.8 Thermobaric coefficient  
 
The thermobaric coefficient quantifies the rate of variation with pressure of the ratio of the 
thermal expansion coefficient and the saline contraction coefficient.  With respect to 
potential temperature θ  the thermobaric coefficient is (McDougall (1987b))  
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This expression for the thermobaric coefficient is most readily evaluated by differentiating 
an expression for density expressed as a function of potential temperature rather than in 
situ temperature, that is, with density expressed in the functional form ( )A, , .S pρ ρ θ=     

http://www.teos-10.org/�
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With respect to Conservative Temperature Θ  the thermobaric coefficient is  
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This expression for the thermobaric coefficient is most readily evaluated by differentiating 
an expression for density expressed as a function of Conservative Temperature rather than 
in situ temperature, that is, with density expressed in the functional form ( )Aˆ , , .S pρ ρ= Θ    

The thermobaric coefficient enters various quantities to do with the path-dependent 
nature of neutral trajectories and the ill-defined nature of neutral surfaces (see (3.13.1) – 
(3.13.7)).  The thermobaric dianeutral advection associated with the lateral mixing of heat 
and salt along neutral tangent planes is given by Tb 2

b n ne gN K T Pθ θ−= − ∇ ⋅∇  or 
Tb 2

b n ne gN K T P− Θ= − ∇ Θ⋅∇  where nθ∇  and n∇ Θ  are the two-dimensional gradients of 
either potential temperature or Conservative Temperature along the neutral tangent 
plane, nP∇  is the corresponding epineutral gradient of absolute pressure and K  is the 
epineutral diffusion coefficient.  Note that the thermobaric dianeutral advection is 
proportional to the mesoscale eddy flux of “heat” along the neutral tangent plane, 

0 ,p nc K− ∇ Θ  and is independent of the amount of small-scale (dianeutral) turbulent mixing 
and hence is also independent of the dissipation of mechanical energy ε  (Klocker and 
McDougall (2010a)).  It is shown in appendix A.14 below that while the epineutral 
diffusive fluxes nK θ− ∇  and nK− ∇ Θ  are different, the product of these fluxes with their 
respective thermobaric coefficients is the same, that is, b b .n nT Tθ θ Θ∇ = ∇ Θ   Hence the 
thermobaric dianeutral advection Tbe  is the same whether it is calculated as 

2
b n ngN K T Pθ θ−− ∇ ⋅∇  or as 2

b .n ngN K T P− Θ− ∇ Θ⋅∇   Expressions for bT θ  and bT Θ  in terms of 
enthalpy in the functional forms ( )A, ,h S pθ  and ( )A

ˆ , ,h S pΘ  can be found in appendix P.   
Interestingly, for given magnitudes of the epineutral gradients of pressure and 

Conservative Temperature, the dianeutral advection, Tb 2
b n ne gN K T P− Θ= − ∇ Θ⋅∇ , of 

thermobaricity is maximized when these gradients are parallel, while neutral helicity is 
maximized when these gradients are perpendicular, since neutral helicity is proportional 
to ( )b n nT PΘ ∇ ×∇ Θ ⋅k  (see Eqn. (3.13.2)).   

This thermobaric vertical advection process, Tbe , is absent from standard layered 
ocean models in which the vertical coordinate is a function only of AS  and Θ  (such as 2 ,σ  
potential density referenced to 2000 dbar).  As described in appendix A.27 below, the 
isopycnal diffusion of heat and salt in these layered models, caused by both parameterized 
diffusion along the coordinate and by eddy-resolved motions, does give rise to the 
cabbeling advection through the coordinate surfaces but does not allow the thermobaric 
velocity Tbe  through these surfaces (Klocker and McDougall (2010a)).  

In both the SIA and GSW computer software libraries the thermobaric parameter is 
output in units of 1 1K  Pa− − .   

 
 
 

A.14 Advective and diffusive “heat” fluxes  
 

In section 3.23 and appendices A.8 and A.13 the First Law of Thermodynamics is shown to 
be practically equivalent to the conservation equation (A.21.15) for Conservative 
Temperature .Θ   We have emphasized that this means that the advection of “heat” is very 
accurately given as the advection of 0 .pc Θ   In this way 0

pc Θ  can be regarded as the “heat 
content” per unit mass of seawater and the error involved with making this association is 
approximately 1% of the error in assuming that either 0

pc θ  or ( )A , , 0dbarpc S θ θ  is the 
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“heat content” per unit mass of seawater (see also appendix A.21 for a discussion of this 
point).   

The conservative form (A.21.15) implies that the turbulent diffusive flux of heat should 
be directed down the mean gradient of Conservative Temperature rather than down the 
mean gradient of potential temperature.  In this appendix we quantify the difference 
between these mean temperature gradients.   

Consider first the respective temperature gradients along the neutral tangent plane.  
From Eqn. (3.11.2) we find that  

( ) ( )A ,n n nSθ θα β θ α βΘ Θ∇ = ∇ = ∇ Θ  (A.14.1) 

so that the epineutral gradients of θ  and Θ  are related by the ratios of their respective 
thermal expansion and saline contraction coefficients, namely  
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This proportionality factor between the parallel two-dimensional vectors nθ∇  and n∇ Θ  is 
readily calculated and illustrated graphically.  Before doing so we note two other 
equivalent expressions for this proportionality factor.   

The epineutral gradients of θ , Θ  and AS  are related by (using ( )A
ˆ ,Sθ θ= Θ )  

A A
ˆ ˆ ,n n S nSθ θ θΘ∇ = ∇ Θ + ∇  (A.14.3) 

and using the neutral relationship ( )An nS α βΘ Θ∇ = ∇ Θ  we find  

( )A
ˆ ˆ .n S nθ θ α β θΘ Θ
Θ  ∇ = + ∇ Θ   (A.14.4) 

Also, in section 3.13 we found that ,b n b nT Tθ θ Θ∇ = ∇ Θ  so that we find the expressions  
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and it can be shown that ˆθα α θΘ
Θ=  and ( )A

ˆ ˆ1 S
θβ β α β θ θΘ Θ Θ

Θ = +   , that is, 

A
ˆ ˆ .S

θβ β α θ θΘ Θ
Θ= +   The ratios θα αΘ  and θβ βΘ  have been plotted by Graham and 

McDougall (2011); interestingly θα αΘ  is approximately a linear function of AS  while 
θβ βΘ  is approximately a function of only Θ .  The partial derivatives θ̂Θ  and 

AŜθ  in the 
last part of Eqn. (A.14.5) are both independent of pressure while α βΘ Θ  is a function of 
pressure.  The ratio, Eqn. (A.14.5), of the epineutral gradients of θ  and Θ  is shown in 
Figure A.14.1 at 0p = , indicating that the epineutral gradient of potential temperature is 
sometimes more that 1% different to that of Conservative Temperature.  This ratio 

n nθ∇ ∇ Θ  is only a weak function of pressure.  This ratio, n nθ∇ ∇ Θ  (i.e. Eqn. (A.14.5)), 
is available in the GSW Oceanographic Toolbox as function gsw_ntp_pt_vs_CT_ratio.   

Similarly to Eqn. (A.14.3), the vertical gradients are related by  

A A
ˆ ˆ ,

zz z S Sθ θ θΘ= Θ +  (A.14.6) 

and using the definition, Eqn. (3.15.1), of the stability ratio we find that  
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For values of the stability ratio Rρ  close to unity, the ratio z zθ Θ  is close to the values of 
n nθ∇ ∇ Θ  shown in Figure A.14.1.   
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Figure A.14.1.  Contours of ( )1 100%n nθ∇ ∇ Θ − ×  at 0p = , showing the percentage  
                            difference between the epineutral gradients of θ  and Θ .  The blue dots 
                            are from the ocean atlas of Gouretski and Koltermann (2004) at 0p = .   

 
As noted in section 3.8 the dianeutral advection of thermobaricity is the same when 

quantified in terms of θ  as when done in terms of Θ .  The same is not true of the dianeutral 
velocity caused by cabbeling.  The ratio of the cabbeling dianeutral velocity calculated using 
potential temperature to that using Conservative Temperature is given by 
( ) ( )b bn n n nC Cθ θ θ Θ∇ ⋅∇ ∇ Θ⋅∇ Θ  (see section 3.9) which can be expressed as  
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 (A.14.8) 

and this is contoured in Fig. A.14.2.  While the ratio of Eqn. (A.14.8) is not exactly unity, it 
varies relatively little in the oceanographic range, indicating that the dianeutral advection 
due to cabbeling estimated using θ  or Θ  are within half a percent of each other at 0p = .    

 
 
Figure A.14.2.  Contours of the percentage difference of ( ) ( )2 2

b bn nC Cθ θ Θ∇ ∇ Θ   
                           from unity at 0p =  dbar.   
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