Notes on the function, gsw_t_freezing(SA,p,saturation_fraction), which evaluates the in situ freezing temperature of seawater

This function, **gsw_t_freezing**, finds the *in situ* temperature at which seawater of Absolute Salinity SA freezes at pressure p (dbar). The third argument is optional and is the saturation fraction (between 0 and 1.0) of dissolved air in seawater. That is, if the seawater is air-free, then saturation_fraction is 0, and if the seawater is saturated with air, saturation_fraction is 1.0. If this third argument is missing, it is assumed that the seawater is saturated with dissolved air. This function, **gsw_t_freezing**, is essentially the following calls to two other GSW functions,

CT_freezing = gsw_CT_freezing(SA,p,saturation_fraction); t_freezing = gsw_t_from_CT(SA,CT_freezing,p);

In the region of validity of the TEOS-10 Gibbs function, the r.m.s. accuracy of the freezing temperature is estimated to be 1.5mK (see section 6.3, figure 4 and table 7 of Feistel (2008)). The polynomial of $gsw_CT_freezing$ fits the full TEOS-10 Θ freezing temperature to within $\pm 0.6 \,\mathrm{mK}$ over both the valid TEOS-10 $S_A - p$ range and the extrapolated region. The present function, gsw_t_freezing, has the same accuracy as this, namely ±0.6 mK. Hence we conclude that the use of gsw_t_freezing is essentially as accurate as the full TEOS-10 approach for calculating the freezing temperature. The SIA code of TEOS-10 from which we obtained the freezing temperatures that underlie this fit returns values for the freezing temperature down to about -12° C. This *in situ* freezing temperature corresponds approximately to the line in (S_A, p) space connecting $(120 \,\mathrm{g \, kg^{-1}}, 5\,000 \,\mathrm{d bar}),$ $(50 \,\mathrm{g \, kg^{-1}}, 10 \, 000 \,\mathrm{d bar})$ to and gsw_CT_freezing and gsw_t_freezing return Nans if the input Absolute Salinity and pressure lie beyond this line in $S_A - p$ space.

Reference

Feistel, R., 2008: A Gibbs function for seawater thermodynamics for-6 to 80 °C and salinity up to 120 g kg⁻¹, *Deep-Sea Res. I*, **55**, 1639-1671.