Notes on the function gsw_sigma4_CT_exact(SA,CT)

Potential density anomaly σ^{Θ} is defined by Eqn. (3.6.1) of IOC *et al.* (2010), namely

$$\sigma^{\Theta}(S_{A},t,p,p_{r}) = \rho^{\Theta}(S_{A},t,p,p_{r}) - 1000 \text{ kg m}^{-3}$$

= $\hat{\rho}(S_{A},\Theta,p_{r}) - 1000 \text{ kg m}^{-3}.$ (1)

The present function, **gsw_sigma4_CT_exact**(SA,CT), calculates potential density with a reference pressure of 4000 dbar, and uses the full TEOS-10 Gibbs function $g(S_A, t, p)$ of IOC *et al.* (2010), being the sum of the IAPWS-09 and IAPWS-08 Gibbs functions.

This function is simply two calls to other GSW functions, as follows,

```
pr4000 = 4000*ones(size(SA));
t = gsw_t_from_CT(SA,CT,pr4000);
sigma4_CT_exact = gsw_rho_t_exact(SA,t,pr4000) - 1000;
```

References

- IAPWS, 2008: Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater. The International Association for the Properties of Water and Steam. Berlin, Germany, September 2008, available from <u>www.iapws.org</u>. This Release is referred to in the text as **IAPWS-08**.
- IAPWS, 2009: Supplementary Release on a Computationally Efficient Thermodynamic Formulation for Liquid Water for Oceanographic Use. The International Association for the Properties of Water and Steam. Doorwerth, The Netherlands, September 2009, available from http://www.iapws.org. This Release is referred to in the text as IAPWS-09.
- IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp. Available from http://www.TEOS-10.org

Here follows section 3.6 of the TEOS-10 manual (IOC et al. (2010)).

3.6 Potential density anomaly

Potential density anomaly, σ^{θ} or σ^{Θ} , is simply potential density minus 1000 kg m⁻³,

$$\sigma^{\theta}(S_{A},t,p,p_{r}) = \sigma^{\Theta}(S_{A},t,p,p_{r}) = \rho^{\theta}(S_{A},t,p,p_{r}) - 1000 \text{ kg m}^{-3}$$

= $\rho^{\Theta}(S_{A},t,p,p_{r}) - 1000 \text{ kg m}^{-3}$
= $g_{P}^{-1}(S_{A},\theta[S_{A},t,p,p_{r}],p_{r}) - 1000 \text{ kg m}^{-3}.$ (3.6.1)

Note that it is equally correct to label potential density anomaly as σ^{θ} or σ^{Θ} because both θ and Θ are constant during the isentropic and isohaline pressure change from *p* to *p*_r.