Notes on the function gsw_sigma0_pt0_exact(SA,pt0) Potential density anomaly σ^{Θ} is defined by Eqn. (3.6.1) of IOC *et al.* (2010), namely $$\sigma^{\Theta}(S_{A}, t, p, p_{r}) = \rho^{\Theta}(S_{A}, t, p, p_{r}) - 1000 \text{ kg m}^{-3}$$ $$= \hat{\rho}(S_{A}, \Theta, p_{r}) - 1000 \text{ kg m}^{-3}.$$ (1) The present function, $gsw_sigma0_pt0_exact(SA,pt0)$, calculates potential density with a reference pressure of 0 dbar, and uses the full TEOS-10 Gibbs function $g(S_A,t,p)$ of IOC *et al.* (2010), being the sum of the IAPWS-09 and IAPWS-08 Gibbs functions. The temperature input to this function, pt0, is potential temperature θ referenced to 0 dbar. This function could have evaluated sigma0 by calling other GSW functions such as **gsw_rho_t_exact** or **gsw_gibbs** but we have chosen to write this function in terms of the actual coefficients of the TEOS-10 Gibbs function so that the present function is a standalone function. This will ease the adaption of this function to other computer languages. ## References IAPWS, 2008: Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater. The International Association for the Properties of Water and Steam. Berlin, Germany, September 2008, available from www.iapws.org. This Release is referred to in the text as IAPWS-08. IAPWS, 2009: Supplementary Release on a Computationally Efficient Thermodynamic Formulation for Liquid Water for Oceanographic Use. The International Association for the Properties of Water and Steam. Doorwerth, The Netherlands, September 2009, available from http://www.iapws.org. This Release is referred to in the text as IAPWS-09. IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp. Available from http://www.TEOS-10.org Here follows section 3.6 of the TEOS-10 manual (IOC et al. (2010)). ## 3.6 Potential density anomaly Potential density anomaly, σ^{θ} or σ^{Θ} , is simply potential density minus 1000 kg m⁻³, $$\sigma^{\theta}(S_{A}, t, p, p_{r}) = \sigma^{\Theta}(S_{A}, t, p, p_{r}) = \rho^{\theta}(S_{A}, t, p, p_{r}) - 1000 \text{ kg m}^{-3}$$ $$= \rho^{\Theta}(S_{A}, t, p, p_{r}) - 1000 \text{ kg m}^{-3}$$ $$= g_{P}^{-1}(S_{A}, \theta[S_{A}, t, p, p_{r}], p_{r}) - 1000 \text{ kg m}^{-3}.$$ (3.6.1) Note that it is equally correct to label potential density anomaly as σ^{θ} or σ^{Θ} because both θ and Θ are constant during the isentropic and isohaline pressure change from p to p_r .