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Notes on the function, gsw_pt_from_entropy(SA, entropy), which 
evaluates potential temperature with reference pressure of 0 dbar 
from specific entropy  
 

This function, gsw_pt_from_entropy, finds ( )A,Sθ θ η= , the potential temperature 
with respect to the reference pressure r 0 dbarp =  for given values of Absolute Salinity 
and specific entropy.  A modified Newton-Raphson iterative solution technique is 
employed to find the zero of the function  

( ) ( )A, 0f Sθ η θ η≡ − = , (1) 

which equates the specific entropy of the “bottle”, ( )A,Sη θ , to the input specific entropy 
η .  This function, gsw_pt_from_entropy is very similar in its operation to the function 
gsw_pt0_from_t, which calculates the potential temperature referenced to r 0 dbarp =  
from the inputs ( )A, ,S t p .  The main difference between these functions relates to the way 
the initial value of potential temperature, 0θ , is evaluated.  How this is done for the 
present function is now described.   

The plot of ( )θ −Θ  on the AS − Θ  diagram shown as Figure A.17.1 of IOC et al. 
(2010) (this figure is reproduced below) suggests the following approximation  

( ) ( )A SO0.05 1 S Sθ −Θ ≈ − − Θ , (2) 

from which we find that θΘ  can be written as  

( ) 1
A SO1 0.05 1 S Sθ

−
Θ ≈ − −  
 . (3) 

The derivative of ( )f θ  with respect to potential temperature is (from Eqn. (1) and from 
Eqn. (P.14a) of IOC et al. (2010))  
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Combining Eqns. (3) and (4) we find the following approximate expression for the 
derivative ( )f θ′ ,   
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Integrating this expression with respect to θ  we find the following approximate 
expression,  
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The second part of this expression is a function of only AS  and has been found as a simple 
fit to entropy at zero potential temperature, that is, a simple fit to ( )A, 0 CSη θ = ° .   

The initial value of potential temperature 0θ  is found by equating the right-hand side 
of Eqn. (6) to the input value of entropy, η , and solving this equation for θ .  This initial 
value of potential temperature, 0θ , is then used in Eqn. (5) to find the initial estimate of the 
derivative ( )0f θ′ .   
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The modified Newton-Raphson iteration technique  
 

The normal Newton-Raphson technique converges iteratively towards a root of the 
function ( ) ( )A, 0f Sθ η θ η≡ − =  with each successive iteration being found from the 
previous one according to  
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Notice that in Eqn. (7) the function value and its derivative are evaluated at the same value 
of θ .  For the thermodynamic cases we consider, the derivative ( )f θ′  is a slowly varying 
function of θ , so that we adopt the numerical technique of McDougall et al. (2003) (see 
pages 731-732 therein) and evaluate the function and its derivative at different values of 
θ , thereby improving convergence.   

Starting from 0θ  and the crude estimate Eqn. (5) of f ′ , an intermediate value of 
potential temperature, 1θ , is found as ( )1 0 0f fθ θ θ ′= − .  The reason for calculating this 
intermediate value is so that the derivative can be evaluated at a potential temperature 
which is close to the mid point between the initial value and the final solution.  The 
derivative is evaluated at [ ]0 10.5 θ θ+  and the next estimate of potential temperature, 2θ , is 
found from  
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This marks the end of the first iteration of the modified Newton-Raphson method.  At this 
stage we have performed just one evaluation of both f  and f ′ ; the same number of such 
evaluations as are involved in one full iteration of the standard Newton-Raphson 
procedure.  The next two-step modified Newton-Raphson iteration proceeds as follows  

( )
[ ]( )

2
3 2

0 10.5
f

f
θ

θ θ
θ θ

= −
′ +

,       then      ( )
[ ]( )

2
4 2

2 30.5
f

f
θ

θ θ
θ θ

= −
′ +
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In this whole process leading to the value 4θ , the function f  is evaluated just twice (at 0θ  
and 2θ ) and its derivative f ′  is also evaluated just twice (at [ ]0 10.5 θ θ+  and [ ]2 30.5 θ θ+ ).   

In the application of this modified Newton-Raphson procedure to the function 
gsw_pt_from_entropy we find that the solution converges to machine precision after two 
iterations, and so the code returns the value 4θ  of Eqn. (9b) above.   Hence the function 
gsw_pt_from_entropy evaluates f  twice (at 0θ  and 2θ ) and its derivative f ′  twice (at 

[ ]0 10.5 θ θ+  and [ ]2 30.5 θ θ+ ).   
The derivative ( )f θ′  is given by Eqn. (4) above and is evaluated as the second 

derivative of the Gibbs function,  
( ) ( )A, , 0TTf g Sθθ η θ′ = = − , (10) 

this being called twice, once at [ ]0 10.5 θ θ+  and once at [ ]2 30.5 θ θ+ .  Because this second 
derivative of the Gibbs function is called at zero pressure, a special library function 
gsw_gibbs_pt0_pt0 has been written to gain computational efficiency by explicitly 
recognizing that the pressure is zero.   
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Here follows appendix A.10 of the TEOS-10 Manual (IOC et al. (2010)).   
 
 
A.10 Proof that ( )A,Sθ θ η=  and ( )A,S θΘ=Θ   

 
Consider changes occurring at the sea surface, (specifically at p = 0 dbar) where the 
temperature is the same as the potential temperature referenced to 0 dbar and the 
increment of pressure dp  is zero.  Regarding specific enthalpy h  and chemical potential 
µ  to be functions of entropy η  (in place of temperature t ), that is, considering the 
functional form of h  and µ  to be ( )A, ,h h S pη=



 and ( )A, , ,S pµ µ η=   it follows from the 
fundamental thermodynamic relation (Eqn. (A.7.1)) that  

( ) ( ) ( ) ( )AA A A 0 A A, ,0 d , ,0 d d , ,0 d ,Sh S h S S T S Sη η η η θ η µ η+ = + +
 

 (A.10.1) 

which shows that specific entropy η  is simply a function of Absolute Salinity AS  and 
potential temperature ,θ  that is ( )A,Sη η θ= , with no separate dependence on pressure.  
It follows that ( )A, .Sθ θ η=    

Similarly, from the definition of potential enthalpy and Conservative Temperature in 
Eqns. (3.2.1) and (3.3.1), at 0p =  dbar it can be seen that the fundamental thermodynamic 
relation (A.7.1) implies  

( ) ( )0
0 A Ad d , ,0 d .pc T S Sθ η µ θΘ = + +   (A.10.2) 

This shows that Conservative Temperature is also simply a function of Absolute Salinity 
and potential temperature, ( )A,S θΘ=Θ , with no separate dependence on pressure.  It then 
follows that Θ  may also be expressed as a function of only AS  and .η   It follows that Θ  
has the “potential” property.   
 
 
 
 
 
 
 
 

http://www.teos-10.org/�
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Also, note Figure A.17.1 below (from IOC et al. (2010)) showing the difference between 
potential temperature θ  and Conservative Temperature Θ .  In the gsw_pt_from_entropy 
function we have approximated the figure below as  

( ) ( )A SO0.05 1 S Sθ − Θ ≈ − − Θ ,  

in order to obtain an initial estimate for θΘ  in the iterative modified Newton-Raphson 
procedure.   

 

 
Figure A.17.1.  Contours (in C° ) of the difference between potential temperature  

and Conservative Temperature θ −Θ .  This plot illustrates the non-
conservative production of potential temperature θ  in the ocean.   
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