Notes on the function gsw_pt_first_derivatives(SA,CT)

This function, gsw_pt_first_derivatives(SA,CT), evaluates the first derivatives of potential temperature with respect to Conservative Temperature and Absolute Salinity, as given in Eqn. (A.12.6) in the TEOS-10 Manual (IOC et al. (2010)), repeated here.

$$
\begin{gather*}
\left.\theta_{\Theta}\right|_{S_{\mathrm{A}}}=\hat{\theta}_{\theta}=c_{p}^{0} / c_{p}\left(S_{\mathrm{A}}, \theta, 0\right) \tag{A.12.6a}\\
\left.\theta_{S_{\mathrm{A}}}\right|_{\Theta}=\hat{\theta}_{S_{\mathrm{A}}}=-\left[\mu\left(S_{\mathrm{A}}, \theta, 0\right)-\left(T_{0}+\theta\right) \mu_{T}\left(S_{\mathrm{A}}, \theta, 0\right)\right] / c_{p}\left(S_{\mathrm{A}}, \theta, 0\right), \tag{A.12.6b}
\end{gather*}
$$

This function gsw_pt_first_derivatives(SA,CT) achieves this by calling another GSW function, gsw_CT_first_derivatives(SA,pt), because, from Eqn. (A.12.9a,b) (repeated below) the first derivatives $\hat{\theta}_{\theta}$ and $\hat{\theta}_{S_{\mathrm{A}}}$ are simply related to $\tilde{\Theta}_{\theta}$ and $\tilde{\Theta}_{S_{\mathrm{A}}}$.

$$
\begin{equation*}
\hat{\theta}_{\Theta}=\frac{1}{\tilde{\Theta}_{\theta}}, \quad \hat{\theta}_{S_{\mathrm{A}}}=-\frac{\tilde{\Theta}_{S_{\mathrm{A}}}}{\tilde{\Theta}_{\theta}}, \quad \hat{\theta}_{\Theta \Theta}=-\frac{\tilde{\Theta}_{\theta \theta}}{\left(\tilde{\Theta}_{\theta}\right)^{3}}, \quad \hat{\theta}_{S_{\mathrm{A}} \Theta}=-\frac{\tilde{\Theta}_{\theta S_{\mathrm{A}}}}{\left(\tilde{\Theta}_{\theta}\right)^{2}}+\frac{\tilde{\Theta}_{S_{\mathrm{A}}} \tilde{\Theta}_{\theta \theta}}{\left(\tilde{\Theta}_{\theta}\right)^{3}}, \tag{A.12.9a,b,c,d}
\end{equation*}
$$

The code evaluates potential temperature and then calls gsw_CT_first_derivatives(SA,pt) to find $\tilde{\Theta}_{\theta}$ and $\tilde{\Theta}_{S_{A}}$, and then these are used to find $\hat{\theta}_{\Theta}$ and $\bar{\theta}_{S_{A}}$.

Hence, this function gsw_pt_first_derivatives(SA,CT) is essentially the following four lines of code.

```
pt = gsw_pt_from_CT(SA,CT);
[CT_SA, CT_pt] = gsw_CT_first_derivatives(SA,pt);
pt_CT = ones(size(CT_pt))./CT_pt;
pt_SA = - CT_SA.*pt_CT;
```

This function is well behaved at $S_{\mathrm{A}}=0 \mathrm{~g} \mathrm{~kg}^{-1}$.

References

IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater - 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp. Available from http://www.TEOS-10.org

Here follows appendix A. 12 of the TEOS-10 Manual (IOC et al., 2010).

A. 12 Differential relationships between η, θ, Θ and S_{A}

Evaluating the fundamental thermodynamic relation in the forms (A.11.6) and (A.11.12) and using the four boxed equations in appendix A.11, we find the relations

$$
\begin{align*}
\left(T_{0}+t\right) \mathrm{d} \eta+\mu(p) \mathrm{dS}_{\mathrm{A}} & =\frac{\left(T_{0}+t\right)}{\left(T_{0}+\theta\right)} c_{p}(0) \mathrm{d} \theta+\left[\mu(p)-\left(T_{0}+t\right) \mu_{T}(0)\right] \mathrm{d} S_{\mathrm{A}} \\
& =\frac{\left(T_{0}+t\right)}{\left(T_{0}+\theta\right)} c_{p}^{0} \mathrm{~d} \Theta+\left[\mu(p)-\frac{\left(T_{0}+t\right)}{\left(T_{0}+\theta\right)} \mu(0)\right] \mathrm{d}_{\mathrm{A}} . \tag{A.12.1}
\end{align*}
$$

The quantity $\mu(p) \mathrm{d}_{\mathrm{A}}$ is now subtracted from each of these three expressions and the whole equation is then multiplied by $\left(T_{0}+\theta\right) /\left(T_{0}+t\right)$ obtaining

$$
\begin{equation*}
\left(T_{0}+\theta\right) \mathrm{d} \eta=c_{p}(0) \mathrm{d} \theta-\left(T_{0}+\theta\right) \mu_{\mathrm{T}}(0) \mathrm{d} S_{\mathrm{A}}=c_{p}^{0} \mathrm{~d} \Theta-\mu(0) \mathrm{d} S_{\mathrm{A}} . \tag{A.12.2}
\end{equation*}
$$

From this follows all the following partial derivatives between η, θ, Θ and S_{A},

$$
\begin{array}{ll}
\left.\Theta_{\theta}\right|_{S_{\mathrm{A}}}=c_{p}\left(S_{\mathrm{A}}, \theta, 0\right) / c_{p}^{0}, & \left.\Theta_{S_{\mathrm{A}}}\right|_{\theta}=\left[\mu\left(S_{\mathrm{A}}, \theta, 0\right)-\left(T_{0}+\theta\right) \mu_{\mathrm{T}}\left(S_{\mathrm{A}}, \theta, 0\right)\right] / c_{p}^{0}, \\
\left.\Theta_{\eta}\right|_{S_{\mathrm{A}}}=\left(T_{0}+\theta\right) / c_{p}^{0}, & \left.\Theta_{S_{\mathrm{A}}}\right|_{\eta}=\mu\left(S_{\mathrm{A}}, \theta, 0\right) / c_{p}^{0}, \\
\left.\theta_{\eta}\right|_{S_{\mathrm{A}}}=\left(T_{0}+\theta\right) / c_{p}\left(S_{\mathrm{A}}, \theta, 0\right), & \left.\theta_{S_{\mathrm{A}}}\right|_{\eta}=\left(T_{0}+\theta\right) \mu_{\mathrm{T}}\left(S_{\mathrm{A}}, \theta, 0\right) / c_{p}\left(S_{\mathrm{A}}, \theta, 0\right), \\
\left.\theta_{\Theta}\right|_{S_{\mathrm{A}}}=c_{p}^{0} / c_{p}\left(S_{\mathrm{A}}, \theta, 0\right), & \left.\theta_{S_{\mathrm{A}}}\right|_{\Theta}=-\left[\mu\left(S_{\mathrm{A}}, \theta, 0\right)-\left(T_{0}+\theta\right) \mu_{T}\left(S_{\mathrm{A}}, \theta, 0\right)\right] / c_{p}\left(S_{\mathrm{A}}, \theta, 0\right), \\
\left.\eta_{\theta}\right|_{S_{\mathrm{A}}}=c_{p}\left(S_{\mathrm{A}}, \theta, 0\right) /\left(T_{0}+\theta\right), & \left.\eta_{S_{\mathrm{A}}}\right|_{\theta}=-\mu_{\mathrm{T}}\left(S_{\mathrm{A}}, \theta, 0\right), \\
\left.\eta_{\Theta}\right|_{S_{\mathrm{A}}}=c_{p}^{0} /\left(T_{0}+\theta\right), & \left.\eta_{S_{\mathrm{A}}}\right|_{\Theta}=-\mu\left(S_{\mathrm{A}}, \theta, 0\right) /\left(T_{0}+\theta\right) . \tag{A.12.8}
\end{array}
$$

The three second order derivatives of $\hat{\eta}\left(S_{\mathrm{A}}, \Theta\right)$ are listed in Eqns. (P.14) and (P.15) of appendix P. The corresponding derivatives of $\hat{\theta}\left(S_{A}, \Theta\right)$, namely $\hat{\theta}_{\Theta}, \hat{\theta}_{S_{A}}, \hat{\theta}_{\Theta \Theta}, \hat{\theta}_{S_{A} \Theta}$ and $\hat{\theta}_{S_{A} S_{A}}$ can also be derived using Eqn. (P.13), obtaining

$$
\begin{gather*}
\hat{\theta}_{\Theta}=\frac{1}{\tilde{\Theta}_{\theta}}, \quad \hat{S}_{S_{\mathrm{A}}}=-\frac{\tilde{\Theta}_{S_{\mathrm{A}}}}{\tilde{\Theta}_{\theta}}, \quad \hat{\theta}_{\Theta \Theta}=-\frac{\tilde{\Theta}_{\theta \theta}}{\left(\tilde{\Theta}_{\theta}\right)^{3}}, \quad \hat{\theta}_{S_{\mathrm{A}} \Theta}=-\frac{\tilde{\Theta}_{\theta S_{\mathrm{A}}}}{\left(\tilde{\Theta}_{\theta}\right)^{2}}+\frac{\tilde{\Theta}_{S_{\mathrm{A}}} \tilde{\Theta}_{\theta \theta}}{\left(\tilde{\Theta}_{\theta}\right)^{3}}, \tag{A.12.9a,b,c,d}\\
\quad \text { and } \quad \hat{\theta}_{S_{\mathrm{A}} S_{\mathrm{A}}}=-\frac{\tilde{\Theta}_{S_{A} S_{\mathrm{A}}}}{\tilde{\Theta}_{\theta}}+2 \frac{\tilde{\Theta}_{S_{\mathrm{A}}}}{\tilde{\Theta}_{\theta}} \frac{\tilde{\Theta}_{\theta S_{\mathrm{A}}}}{\tilde{\Theta}_{\theta}}-\left(\frac{\tilde{\Theta}_{S_{\mathrm{A}}}}{\tilde{\Theta}_{\theta}}\right)^{2} \frac{\tilde{\Theta}_{\theta \theta}}{\tilde{\Theta}_{\theta}}, \tag{A.12.10}
\end{gather*}
$$

in terms of the partial derivatives $\tilde{\Theta}_{\theta}, \tilde{\Theta}_{S_{\mathrm{A}}}, \tilde{\Theta}_{\theta \theta}, \tilde{\Theta}_{\theta S_{\mathrm{A}}}$ and $\tilde{\Theta}_{S_{A} s_{\mathrm{A}}}$ which can be obtained by differentiating the polynomial $\tilde{\Theta}\left(S_{\mathrm{A}}, \theta\right)$ from the TEOS-10 Gibbs function.

