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Notes on the function gsw_ntp_pt_vs_CT_ratio(SA, CT, p)  
 
This function gsw_ntp_pt_vs_CT_ratio(SA,CT,p) evaluates the ratio of the parallel 
gradients of potential temperature and Conservative Temperature in a neutral tangent 
plane.  This ratio is evaluated from the last part of Eqn. (A.14.5) of the TEOS-10 Manual 
(IOC et al. (2010)), namely  
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This ratio is shown in Figure A.14.1 of the TEOS-10 Manual at 0 dbarp =  (and this figure 
is reproduced below).   

This function, gsw_ntp_pt_vs_CT_ratio(SA,CT,p), uses the 48-term expression for 
density, ( )Aˆ , ,S pρ Θ  to evaluate α βΘ Θ  in Eqn. (A.14.5).  This 48-term rational function 
expression for density is discussed in McDougall et al. (2011) and in appendix A.30 and 
appendix K of the TEOS-10 Manual (IOC et al. (2010)).  For dynamical oceanography we 
may take the 48-term rational function expression for density as essentially reflecting the 
full accuracy of TEOS-10.   
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Here follows appendix A.14 of the TEOS-10 Manual (IOC et al. (2010)).   
 
 
 
 

A.14 Advective and diffusive “heat” fluxes  
 

In section 3.23 and appendices A.8 and A.13 the First Law of Thermodynamics is shown to 
be practically equivalent to the conservation equation (A.21.15) for Conservative 
Temperature .Θ   We have emphasized that this means that the advection of “heat” is very 
accurately given as the advection of 0 .pc Θ   In this way 0

pc Θ  can be regarded as the “heat 
content” per unit mass of seawater and the error involved with making this association is 
approximately 1% of the error in assuming that either 0

pc θ  or ( )A , , 0dbarpc S θ θ  is the 
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“heat content” per unit mass of seawater (see also appendix A.21 for a discussion of this 
point).   

The conservative form (A.21.15) implies that the turbulent diffusive flux of heat should 
be directed down the mean gradient of Conservative Temperature rather than down the 
mean gradient of potential temperature.  In this appendix we quantify the difference 
between these mean temperature gradients.   

Consider first the respective temperature gradients along the neutral tangent plane.  
From Eqn. (3.11.2) we find that  

( ) ( )A ,n n nSθ θα β θ α βΘ Θ∇ = ∇ = ∇ Θ  (A.14.1) 

so that the epineutral gradients of θ  and Θ  are related by the ratios of their respective 
thermal expansion and saline contraction coefficients, namely  
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This proportionality factor between the parallel two-dimensional vectors nθ∇  and n∇ Θ  is 
readily calculated and illustrated graphically.  Before doing so we note two other 
equivalent expressions for this proportionality factor.   

The epineutral gradients of θ , Θ  and AS  are related by (using ( )A
ˆ ,Sθ θ= Θ )  

A A
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and using the neutral relationship ( )An nS α βΘ Θ∇ = ∇ Θ  we find  
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Also, in section 3.13 we found that ,b n b nT Tθ θ Θ∇ = ∇ Θ  so that we find the expressions  
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and it can be shown that ˆθα α θΘ
Θ=  and ( )A

ˆ ˆ1 S
θβ β α β θ θΘ Θ Θ

Θ = +   , that is, 

A
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Θ= +   The ratios θα αΘ  and θβ βΘ  have been plotted by Graham and 

McDougall (2011); interestingly θα αΘ  is approximately a linear function of AS  while 
θβ βΘ  is approximately a function of only Θ .  The partial derivatives θ̂Θ  and 

AŜθ  in the 
last part of Eqn. (A.14.5) are both independent of pressure while α βΘ Θ  is a function of 
pressure.  The ratio, Eqn. (A.14.5), of the epineutral gradients of θ  and Θ  is shown in 
Figure A.14.1 at 0p = , indicating that the epineutral gradient of potential temperature is 
sometimes more that 1% different to that of Conservative Temperature.  This ratio 

n nθ∇ ∇ Θ  is only a weak function of pressure.  This ratio, n nθ∇ ∇ Θ  (i.e. Eqn. (A.14.5)), 
is available in the GSW Oceanographic Toolbox as function gsw_ntp_pt_vs_CT_ratio.   

Similarly to Eqn. (A.14.3), the vertical gradients are related by  
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and using the definition, Eqn. (3.15.1), of the stability ratio we find that  
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For values of the stability ratio Rρ  close to unity, the ratio z zθ Θ  is close to the values of 
n nθ∇ ∇ Θ  shown in Figure A.14.1.   
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Figure A.14.1.  Contours of ( )1 100%n nθ∇ ∇ Θ − ×  at 0p = , showing the percentage  
                            difference between the epineutral gradients of θ  and Θ .  The blue dots 
                            are from the ocean atlas of Gouretski and Koltermann (2004) at 0p = .   

 
As noted in section 3.8 the dianeutral advection of thermobaricity is the same when 

quantified in terms of θ  as when done in terms of Θ .  The same is not true of the dianeutral 
velocity caused by cabbeling.  The ratio of the cabbeling dianeutral velocity calculated using 
potential temperature to that using Conservative Temperature is given by 
( ) ( )b bn n n nC Cθ θ θ Θ∇ ⋅∇ ∇ Θ⋅∇ Θ  (see section 3.9) which can be expressed as  
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and this is contoured in Fig. A.14.2.  While the ratio of Eqn. (A.14.8) is not exactly unity, it 
varies relatively little in the oceanographic range, indicating that the dianeutral advection 
due to cabbeling estimated using θ  or Θ  are within half a percent of each other at 0p = .    

 
Figure A.14.2.  Contours of the percentage difference of ( ) ( )2 2

b bn nC Cθ θ Θ∇ ∇ Θ   
                           from unity at 0p =  dbar.   
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