Notes on the function gsw_isopycnal_vs_ntp_CT_ratio(SA,CT,p)

This function **gsw_isopycnal_vs_ntp_CT_ratio**(SA,CT,p) evaluates the "isopycnal temperature gradient ratio" defined by (from section 3.17 of the TEOS-10 Manual, IOC *et al.* (2010))

$$G^{\Theta} \equiv \frac{\left[R_{\rho} - 1\right]}{\left[R_{\rho}/r - 1\right]} \ . \tag{3.17.4}$$

This is the ratio of the (parallel) gradient of Conservative Temperature in a potential density surface, $\nabla_{\sigma}\Theta$, to that in a neutral tangent plane, $\nabla_{n}\Theta$, since, from Eqn. (3.17.3) of the TEOS-10 Manual,

$$\nabla_{\sigma}\Theta = \frac{r[R_{\rho} - 1]}{[R_{\rho} - r]} \nabla_{n}\Theta = G^{\Theta}\nabla_{n}\Theta . \qquad (3.17.3)$$

This function, **gsw_isopycnal_vs_ntp_CT_ratio**(SA,CT,p), uses the 48-term expression for density, $\hat{\rho}(S_A,\Theta,p)$. This 48-term rational function expression for density is discussed in McDougall *et al.* (2011) and in appendix A.30 and appendix K of the TEOS-10 Manual (IOC *et al.* (2010)). For dynamical oceanography we may take the 48-term rational function expression for density as essentially reflecting the full accuracy of TEOS-10.

References

IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp. Available from http://www.TEOS-10.org

McDougall T. J., P. M. Barker, R. Feistel and D. R. Jackett, 2011: A computationally efficient 48-term expression for the density of seawater in terms of Conservative Temperature, and related properties of seawater. submitted to *Ocean Science Discussions*.

Here follows section 3.17 of the TEOS-10 Manual (IOC et al. (2010)).

3.17 Property gradients along potential density surfaces

The two-dimensional gradient of a scalar φ along a potential density surface $\nabla_{\sigma}\varphi$ is related to the corresponding gradient in the neutral tangent plane $\nabla_{n}\varphi$ by

$$\nabla_{\sigma} \varphi = \nabla_{n} \varphi + \frac{\varphi_{z}}{\Theta_{z}} \frac{R_{\rho} [r-1]}{\left[R_{\rho} - r \right]} \nabla_{n} \Theta$$
(3.17.1)

(from McDougall (1987a)), where r is the ratio of the slope on the $S_A - \Theta$ diagram of an isoline of potential density with reference pressure p_r to the slope of a potential density surface with reference pressure p, and is defined by

surface with reference pressure
$$p$$
, and is defined by
$$r = \frac{\alpha^{\Theta}(S_{A}, \Theta, p) / \beta^{\Theta}(S_{A}, \Theta, p)}{\alpha^{\Theta}(S_{A}, \Theta, p_{r}) / \beta^{\Theta}(S_{A}, \Theta, p_{r})}.$$
 (3.17.2)

Substituting $\varphi = \Theta$ into (3.17.1) gives the following relation between the (parallel) isopycnal and epineutral gradients of Θ

$$\nabla_{\sigma}\Theta = \frac{r[R_{\rho} - 1]}{[R_{\rho} - r]}\nabla_{n}\Theta = G^{\Theta}\nabla_{n}\Theta$$
(3.17.3)

where the "isopycnal temperature gradient ratio"

$$G^{\Theta} \equiv \frac{\left[R_{\rho} - 1\right]}{\left[R_{\rho}/r - 1\right]} \tag{3.17.4}$$

has been defined as a shorthand expression for future use. This ratio G^{Θ} is available in the GSW Toolbox from the algorithm $\mathbf{gsw_isopycnal_vs_ntp_CT_ratio}$, while the ratio r of Eqn. (3.17.2) is available there as $\mathbf{gsw_isopycnal_slope_ratio}$. Substituting $\varphi = S_{\mathbf{A}}$ into Eqn. (3.17.1) gives the following relation between the (parallel) isopycnal and epineutral gradients of $S_{\mathbf{A}}$

$$\nabla_{\sigma} S_{\mathcal{A}} = \frac{\left[R_{\rho} - 1\right]}{\left[R_{\rho} - r\right]} \nabla_{n} S_{\mathcal{A}} = \frac{G^{\Theta}}{r} \nabla_{n} S_{\mathcal{A}}. \tag{3.17.5}$$