Notes on the function gsw_isopycnal_slope_ratio(SA, CT, p)

This function gsw_isopycnal_slope_ratio(SA,CT,p) evaluates the ratio r of the slope on the $S_{\mathrm{A}}-\Theta$ diagram of an isoline of potential density with reference pressure p_{r} to the slope of a potential density surface with reference pressure p, and is defined by (from section 3.17 of the TEOS-10 Manual, IOC et al. (2010))

$$
\begin{equation*}
r=\frac{\alpha^{\Theta}\left(S_{\mathrm{A}}, \Theta, p\right) / \beta^{\Theta}\left(S_{\mathrm{A}}, \Theta, p\right)}{\alpha^{\Theta}\left(S_{\mathrm{A}}, \Theta, p_{\mathrm{r}}\right) / \beta^{\Theta}\left(S_{\mathrm{A}}, \Theta, p_{\mathrm{r}}\right)} \tag{3.17.2}
\end{equation*}
$$

This function, gsw_isopycnal_slope_ratio(SA,CT,p), uses the 48-term expression for density, $\hat{\rho}\left(S_{\mathrm{A}}, \Theta, p\right)$. This 48-term rational function expression for density is discussed in McDougall et al. (2011) and in appendix A. 30 and appendix K of the TEOS-10 Manual (IOC et al. (2010)). For dynamical oceanography we may take the 48 -term rational function expression for density as essentially reflecting the full accuracy of TEOS-10.

References

IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater - 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp. Available from http://www.TEOS-10.org
McDougall T. J., P. M. Barker, R. Feistel and D. R. Jackett, 2011: A computationally efficient 48term expression for the density of seawater in terms of Conservative Temperature, and related properties of seawater. submitted to Ocean Science Discussions.

Here follows section 3.17 of the TEOS-10 Manual (IOC et al. (2010)).

3.17 Property gradients along potential density surfaces

The two-dimensional gradient of a scalar φ along a potential density surface $\nabla_{\sigma} \varphi$ is related to the corresponding gradient in the neutral tangent plane $\nabla_{n} \varphi$ by

$$
\begin{equation*}
\nabla_{\sigma} \varphi=\nabla_{n} \varphi+\frac{\varphi_{z}}{\Theta_{z}} \frac{R_{\rho}[r-1]}{\left[R_{\rho}-r\right]} \nabla_{n} \Theta \tag{3.17.1}
\end{equation*}
$$

(from McDougall (1987a)), where r is the ratio of the slope on the $S_{\mathrm{A}}-\Theta$ diagram of an isoline of potential density with reference pressure p_{r} to the slope of a potential density surface with reference pressure p, and is defined by

$$
\begin{equation*}
r=\frac{\alpha^{\Theta}\left(S_{\mathrm{A}}, \Theta, p\right) / \beta^{\Theta}\left(S_{\mathrm{A}}, \Theta, p\right)}{\alpha^{\Theta}\left(S_{\mathrm{A}}, \Theta, p_{\mathrm{r}}\right) / \beta^{\Theta}\left(S_{\mathrm{A}}, \Theta, p_{\mathrm{r}}\right)} . \tag{3.17.2}
\end{equation*}
$$

Substituting $\varphi=\Theta$ into (3.17.1) gives the following relation between the (parallel) isopycnal and epineutral gradients of Θ

$$
\begin{equation*}
\nabla_{\sigma} \Theta=\frac{r\left[R_{\rho}-1\right]}{\left[R_{\rho}-r\right]} \nabla_{n} \Theta=G^{\Theta} \nabla_{n} \Theta \tag{3.17.3}
\end{equation*}
$$

where the "isopycnal temperature gradient ratio"

$$
\begin{equation*}
G^{\Theta} \equiv \frac{\left[R_{\rho}-1\right]}{\left[R_{\rho} / r-1\right]} \tag{3.17.4}
\end{equation*}
$$

has been defined as a shorthand expression for future use. This ratio G^{\ominus} is available in the GSW Toolbox from the algorithm gsw_isopycnal_vs_ntp_CT_ratio, while the ratio r of Eqn. (3.17.2) is available there as gsw_isopycnal_slope_ratio. Substituting $\varphi=S_{\mathrm{A}}$ into Eqn. (3.17.1) gives the following relation between the (parallel) isopycnal and epineutral gradients of $S_{\text {A }}$

$$
\begin{equation*}
\nabla_{\sigma} S_{\mathrm{A}}=\frac{\left[R_{\rho}-1\right]}{\left[R_{\rho}-r\right]} \nabla_{n} S_{\mathrm{A}}=\frac{G^{\Theta}}{r} \nabla_{n} S_{\mathrm{A}} . \tag{3.17.5}
\end{equation*}
$$

