## 2.11 Internal energy

The specific internal energy of seawater u is given by (where  $T_0$  is the Celsius zero point, 273.15 K and  $P_0 = 101325$  Pa is the standard atmosphere pressure)

$$u = u(S_{\rm A}, t, p) = g + (T_0 + t)\eta - (p + P_0)v = g - (T_0 + t)\frac{\partial g}{\partial T}\Big|_{S_{\rm A}, p} - (p + P_0)\frac{\partial g}{\partial P}\Big|_{S_{\rm A}, T}.$$
 (2.11.1)

This expression is an example where the use of non-basic SI units presents a problem, because in the product  $-(p+P_0)v$ ,  $(p+P_0) = P$  must be in Pa if specific volume has its regular units of  $m^3 kg^{-1}$ :- hence here sea pressure p must be expressed in Pa. Also, the pressure derivative in Eqn. (2.11.1) must be done with respect to pressure in Pa.

Specific internal energy u has units of  $J kg^{-1}$  in both the SIA and GSW software libraries.