Gravitational Acceleration

The gravitational acceleration g in the ocean can be taken to be the following function of latitude ϕ and sea pressure p, or height z relative to the geoid,

$$
\begin{align*}
g /\left(\mathrm{m} \mathrm{~s}^{-2}\right) & =9.780327\left(1+5.3024 \times 10^{-3} \sin ^{2} \phi-5.8 \times 10^{-6} \sin ^{2} 2 \phi\right)\left(1-2.26 \times 10^{-7} \mathrm{z} /(\mathrm{m})\right) \\
& =9.780327\left(1+5.2792 \times 10^{-3} \sin ^{2} \phi+2.32 \times 10^{-5} \sin ^{4} \phi\right)\left(1-2.26 \times 10^{-7} \mathrm{z} /(\mathrm{m})\right) \tag{D.3}\\
& \approx 9.780327\left(1+5.2792 \times 10^{-3} \sin ^{2} \phi+2.32 \times 10^{-5} \sin ^{4} \phi\right)\left(1+2.22 \times 10^{-7} \mathrm{p} /(\mathrm{dbar})\right) .
\end{align*}
$$

The dependence on latitude in Eqn. (D.3) is from Moritz (2000) and is the gravitational acceleration on the surface of an ellipsoid which approximates the geoid. The variation of g with z and p in the ocean in Eqn. (D.3) is derived in McDougall et al. (2010b). The height z above the geoid is negative in the ocean. Note that g increases with depth in the ocean at about 71.85% of the rate at which it decreases with height in the atmosphere.

At a latitude of $45^{\circ} \mathrm{N}$ and at $p=0, g=9.8062 \mathrm{~m} \mathrm{~s}^{-2}$, which is a value commonly used in ocean models. The value of g averaged over the earth's surface is $g=9.7976 \mathrm{~m} \mathrm{~s}^{-2}$, while the value averaged over the surface of the ocean is $g=9.7963 \mathrm{~m} \mathrm{~s}^{-2}$ (Griffies (2004)).

