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Notes on the function gsw_enthalpy_first_derivatives(SA,CT,p)  
 

This function, gsw_enthalpy_first_derivatives(SA,CT,p), evaluates the first order 
partial derivatives of enthalpy ( )A

ˆ , ,h h S p= Θ  with respect to Absolute Salinity, 
Conservative Temperature and pressure, as derived by McDougall (2003), and as given in 
Eqns. (A.11.12), (A.11.15) and (A.11.18) of the TEOS-10 Manual (IOC et al., 2010), repeated 
here.   
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This function uses the full TEOS-10 Gibbs function ( )A , ,g S t p  of IOC et al. (2010), being 
the sum of the IAPWS-09 and IAPWS-08 Gibbs functions.  The function first calculates 
both in situ temperature t  and potential temperature θ .  From these variables, ĥΘ  is 
readily calculated, as is the specific volume ( )A , ,v S t p  and hence ˆ

ph .  Both the terms 
( )A A , ,0Sg S θ  and ( )A A , ,Sg S t p  on the right-hand side of Eqn. (A.11.18) contain logarithmic 

singularities in the square root of Absolute Salinity, but these singularities exactly cancel 
in Eqn. (A.11.18).  Hence, in the gsw_enthalpy_first_derivatives(SA,CT,p) code the right-
hand side of Eqn. (A.11.18) is not simply calculated by twice calling the AS  derivative of 
the Gibbs function, but rather, the polynomials representing both ( )A A , ,0Sg S θ  and 

( )A A , ,Sg S t p  are incorporated into the code, and the logarithm terms are deliberately 
excluded.  In this way, this function can be used with the input value of AS  being exactly 
zero.  All three first derivatives are well behaved as Absolute Salinity approaches zero, as 
well as at 1

A 0 g kgS −= .  
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Here follows appendices A.10, A.11 and A.12 of the TEOS-10 Manual (IOC et al., 2010).   
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A.10 Proof that ( )A,Sθ θ η=  and ( )A,S θΘ=Θ   
 

Consider changes occurring at the sea surface, (specifically at p = 0 dbar) where the 
temperature is the same as the potential temperature referenced to 0 dbar and the 
increment of pressure dp  is zero.  Regarding specific enthalpy h  and chemical potential 
µ  to be functions of entropy η  (in place of temperature t ), that is, considering the 
functional form of h  and µ  to be ( )A, ,h h S pη=



 and ( )A, , ,S pµ µ η=   it follows from the 
fundamental thermodynamic relation (Eqn. (A.7.1)) that  

( ) ( ) ( ) ( )AA A A 0 A A, ,0 d , ,0 d d , ,0 d ,Sh S h S S T S Sη η η η θ η µ η+ = + +
 

  (A.10.1) 

which shows that specific entropy η  is simply a function of Absolute Salinity AS  and 
potential temperature ,θ  that is ( )A,Sη η θ= , with no separate dependence on pressure.  
It follows that ( )A, .Sθ θ η=    

Similarly, from the definition of potential enthalpy and Conservative Temperature in 
Eqns. (3.2.1) and (3.3.1), at 0p =  dbar it can be seen that the fundamental thermodynamic 
relation (A.7.1) implies  

( ) ( )0
0 A Ad d , ,0 d .pc T S Sθ η µ θΘ = + +   (A.10.2) 

This shows that Conservative Temperature is also simply a function of Absolute Salinity 
and potential temperature, ( )A,S θΘ=Θ , with no separate dependence on pressure.  It then 
follows that Θ  may also be expressed as a function of only AS  and .η   It follows that Θ  
has the “potential” property.   
 
 
A.11 Various isobaric derivatives of specific enthalpy  

 
Because of the central role of enthalpy in the transport and the conservation of “heat” in 
the ocean, the derivatives of specific enthalpy at constant pressure are here derived with 
respect to Absolute Salinity and with respect to the three “temperature-like” variables 

,η θ  and Θ  as well as in situ temperature .t    
 We begin by noting that the three standard derivatives of ( )A, ,h h S t p=  when in 
situ temperature t  is taken as the “temperature-like” variable are  

( ) ( ) ( )A A 0 A, , , , , ,TT ph S S t p T t S t pµ µ∂ ∂ = − +  (A.11.1) 

( ) ( ) ( )
A A 0 A, , , , , ,p TS ph T c S t p T t S t pη∂ ∂ = = +  (A.11.2) 
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A A 0 A, , , , , .TS Th P v S t p T t v S t p∂ ∂ = − +  (A.11.3) 

Now considering specific enthalpy to be a function of entropy (rather than of 
temperature t ), that is, taking ( )A, , ,h h S pη=



 the fundamental thermodynamic relation 
(A.7.1) becomes  

( )A A 0 Ad d d dSh h S T t Sη η η µ+ = + +
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so that  
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 (A.11.5) 

Now taking specific enthalpy to be a function of potential temperature (rather than of 
temperature t ), that is, taking ( )A, , ,h h S pθ=   the fundamental thermodynamic relation 
(A.7.1) becomes  

( )A A 0 Ad d d dSh h S T t Sθ θ η µ+ = + +        while      
A ,

.
S

h P v
θ

∂ ∂ =  (A.11.6) 

To evaluate the hθ  partial derivative, it is first written in terms of the derivative with 
respect to entropy as  
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A AA A
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,S SS p S p
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where (A.11.5) has been used.  This equation can be evaluated at 0p =  when it becomes 
(the potential temperature used here is referenced to r 0p = )  

( ) ( )
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= = +  (A.11.8) 

These two equations are used to arrive at the desired expression for hθ  namely  
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To evaluate the 
ASh  partial derivative, we first write specific enthalpy in the functional 

form ( )( )A A, , ,h h S S pη θ=


 and then differentiate it, finding  

A A AA, , ,
.S S Sp p S p

h h hη θθ η
η= +

 

  (A.11.10) 

The partial derivative of specific entropy Tgη = −  (Eqn. (2.10.1)) with respect to Absolute 
Salinity, 

A A
,S S Tgη = −  is also equal to Tµ−  since chemical potential is defined by Eqn. 

(2.9.6) as 
ASgµ = .  Since the partial derivative of entropy with respect to AS  in (A.11.10) is 

performed at fixed potential temperature (rather than at fixed in situ temperature), this is 
equal to Tµ−  evaluated at 0.p =   Substituting both parts of (A.11.5) into (A.11.10) we 
have the desired expression for 

ASh  namely  
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 (A.11.11) 

Notice that this expression contains some things that are evaluated at the general pressure 
p  and one evaluated at the reference pressure r 0.p =    

Now considering specific enthalpy to be a function of Conservative Temperature 
(rather than of temperature t ), that is, taking ( )A

ˆ , , ,h h S p= Θ  the fundamental 
thermodynamic relation (A.7.1) becomes  

( )A A 0 A
ˆ ˆd d d dSh h S T t Sη µΘ Θ + = + +       while      

A ,
ˆ .

S
h P v

Θ
∂ ∂ =  (A.11.12) 

The partial derivative ĥΘ  follows directly from this equation as  

( ) ( )
A AA

0 0,,
ˆ .S p SS p
h T t T tη ηΘ Θ Θ= + = +  (A.11.13) 

At 0p =  this equation reduces to  
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and combining these two equations gives the desired expression for ĥΘ  namely  
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To evaluate the 
A

ˆ
Sh  partial derivative we first write h  in the functional form 

( )( )A A, , ,h h S S pη= Θ


 and then differentiate it, finding (using both parts of Eqn. (A.11.5))  

( ) ( )A AA 0,
ˆ , , .S Sp
h S t p T tµ η

ΘΘ
= + +  (A.11.16) 

The differential expression Eqn. (A.11.12) can be evaluated at 0p =  where the left-hand 
side is simply 0dpc Θ  so that from Eqn. (A.11.12) we find that   
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so that the desired expression for 
A

ˆ
Sh  is  
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The above boxed expressions for four different isobaric derivatives of specific enthalpy are 
important as they are integral to forming the First Law of Thermodynamics in terms of 
potential temperature and in terms of Conservative Temperature.  The partial derivatives 
ĥΘ  and 

A
ˆ
Sh  of Eqns. (A.11.15) and (A.11.18) can be calculated using the GSW 

Oceanographic Toolbox function gsw_enthalpy_first_derivatives.   
The second order partial derivatives ĥΘΘ , 

A
ˆ
Sh Θ  and 

A A
ˆ
S Sh  can be written in terms of 

the seawater Gibbs function as (from McDougall et al. (2011b))  
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and  
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These second order partial derivatives can be calculated using the GSW Oceanographic 
Toolbox function gsw_enthalpy_second_derivatives.   
 
 
A.12 Differential relationships between , ,η θ Θ  and AS   

 
Evaluating the fundamental thermodynamic relation in the forms (A.11.6) and (A.11.12) 
and using the four boxed equations in appendix A.11, we find the relations  
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The quantity ( ) Adp Sµ  is now subtracted from each of these three expressions and the 
whole equation is then multiplied by ( ) ( )0 0T T tθ+ +  obtaining  

( ) ( ) ( ) ( ) ( )0
0 0 A Ad 0 d 0 d d 0 d .p T pT c T S c Sθ η θ θ µ µ+ = − + = Θ −  (A.12.2) 

From this follows all the following partial derivatives between , ,η θ Θ  and A,S   
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A

0
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Θ
= − +  (A.12.8) 

The three second order derivatives of ( )Aˆ ,Sη Θ  are listed in Eqns. (P.14) and (P.15) of 
appendix P.  The corresponding derivatives of ( )A

ˆ ,Sθ Θ , namely θ̂Θ , 
AŜθ , θ̂ΘΘ , 

AŜθ Θ  and 

A AŜ Sθ  can also be derived using Eqn. (P.13), obtaining  

1ˆ
θ

θΘ =
Θ

,   A
A

ˆ S
S

θ
θ

Θ
= −

Θ





,   
( )3

ˆ θθ

θ

θΘΘ
Θ

= −
Θ





,   
( ) ( )

A A
A 2 3

ˆ S S
S

θ θθ

θ θ

θ Θ

Θ Θ Θ
= − +

Θ Θ

  

 

, (A.12.9a,b,c,d) 

  and    A A A A A
A A

2

ˆ 2S S S S S
S S

θ θθ

θ θ θ θ θ
θ

 Θ Θ Θ Θ Θ
= − + −   Θ Θ Θ Θ Θ 

   



    

, (A.12.10) 

in terms of the partial derivatives θΘ , 
ASΘ , θθΘ , 

ASθΘ  and 
A AS SΘ  which can be obtained 

by differentiating the polynomial ( )A,S θΘ  from the TEOS-10 Gibbs function.   
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