2.20 Isobaric heat capacity

The specific isobaric heat capacity c_p is the rate of change of specific enthalpy with temperature at constant Absolute Salinity S_A and pressure p, so that

$$c_{p} = c_{p} \left(S_{A}, t, p \right) = \left. \frac{\partial h}{\partial T} \right|_{S_{A}, p} = - \left(T_{0} + t \right) g_{TT}.$$
 (2.20.1)

The isobaric heat capacity c_p varies over the $S_A - \Theta$ plane at p = 0 by approximately 5%, as illustrated in Figure 4.

Figure 4. Contours of isobaric specific heat capacity c_p of seawater (in J kg⁻¹ K⁻¹), Eqn. (2.20.1), at p = 0.

The isobaric heat capacity c_p has units of $J \text{ kg}^{-1} \text{ K}^{-1}$ in both the SIA and GSW computer software libraries.

2.21 Isochoric heat capacity

The specific isochoric heat capacity c_v is the rate of change of specific internal energy u with temperature at constant Absolute Salinity S_A and specific volume, v, so that

$$c_{\nu} = c_{\nu} \left(S_{\rm A}, t, p \right) = \frac{\partial u}{\partial T} \bigg|_{S_{\rm A}, \nu} = - \left(T_0 + t \right) \left(g_{TT} g_{PP} - g_{TP}^2 \right) \Big/ g_{PP} \,. \tag{2.21.1}$$

Note that the isochoric and isobaric heat capacities are related by

$$c_v = c_p - \frac{(T_0 + t)(\alpha^t)^2}{(\rho \kappa^t)}$$
, and by $c_v = c_p \frac{\kappa}{\kappa^t}$. (2.21.2)

The isochoric heat capacity c_v has units of $J \text{ kg}^{-1} \text{ K}^{-1}$ in both the SIA and GSW computer software libraries.