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Notes on the function gsw_beta_CT_exact(SA, CT, p)  
 

This function, gsw_beta_CT_exact(SA,CT,p), evaluates the saline contraction 
coefficient with respect to Absolute Salinity βΘ  at constant Conservative Temperature Θ , 
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with the input temperature being Conservative Temperature Θ .  This function uses the 
full TEOS-10 Gibbs function ( )A , ,g S t p  of IOC et al. (2010), being the sum of the IAPWS-09 
and IAPWS-08 Gibbs functions.   

This function is simply two calls to other GSW functions, as follows,  
 

t = gsw_t_from_CT(SA,CT,p);  
beta_CT_exact = gsw_beta_const_CT_t_exact(SA,t,p);  
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Here follows section 2.19 and appendix A.15 of the TEOS-10 Manual (IOC et al., 2010).   
 
 
2.19 Saline contraction coefficients  
 
The saline contraction coefficient tβ  (sometimes also called the haline contraction 
coefficient) at constant in situ temperature ,t  is  
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The saline contraction coefficient θβ  at constant potential temperature ,θ  is (see 
appendix A.15)  
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where rp  is the reference pressure of .θ   One of the 
AS Tg  derivatives in the numerator is 

evaluated at ( )A r, ,S pθ  whereas all the other derivatives are evaluated at ( )A, , .S t p    
The saline contraction coefficient β Θ  at constant Conservative Temperature ,Θ  is (see 

appendix A.15)  
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Note that Conservative Temperature Θ  is defined only with respect to a reference 
pressure of 0 dbar as indicated in this equation.  The 

ASg  derivative in the numerator is 
evaluated at ( )A, , 0S θ  whereas all the other derivatives are evaluated at ( )A, , .S t p    

In the SIA computer software (appendix M) all three saline contraction coefficients are 
produced in units of 1kg kg−  while in the GSW Oceanographic Toolbox (appendix N) all 
three saline contraction coefficients are produced in units of 1kg g−  consistent with the 
preferred oceanographic unit for AS  being 1g kg .−    
 
 
 
 
A.15 Derivation of the expressions for , ,θ θα β αΘ  and β Θ   

 
This appendix derives the expressions in Eqns. (2.18.2) – (2.18.3) and (2.19.2) – (2.19.3) for 
the thermal expansion coefficients θα  and αΘ  and the haline contraction coefficients θβ  
and .β Θ    

In order to derive Eqn. (2.18.2) for θα  we first need an expression for 
A , .S pTθ∂ ∂   This 

is found by differentiating with respect to in situ temperature the entropy equality 
( ) [ ]( )A A A r r, , , , , , ,S t p S S t p p pη η θ=  which defines potential temperature, obtaining  
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This is then used to obtain the desired expression Eqn. (2.18.2) for θα  as follows  
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In order to derive Eqn. (2.18.3) for αΘ  we first need an expression for 
A , .S pt∂Θ ∂   This 

is found by differentiating with respect to in situ temperature the entropy equality 
( ) [ ]( )A A Aˆ, , , , ,S t p S S t pη η= Θ  obtaining  
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where the second part of this equation has used Eqn. (A.12.4) for 
A

.
SηΘ   This is then used 

to obtain the desired expression Eqn. (2.18.3) for αΘ  as follows  
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In order to derive Eqn. (2.19.2) for θβ  we first need an expression for A , .T pSθ∂ ∂   This 
is found by differentiating with respect to Absolute Salinity the entropy equality 
( ) [ ]( )A A A r r, , , , , , ,S t p S S t p p pη η θ=  which defines potential temperature, obtaining  
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where Eqns. (A.12.5) and (A.12.7) have been used with a general reference pressure rp  
rather than with r 0.p =   By differentiating [ ]( )A A r, , , , ,S S t p p pρ ρ θ=   with respect to 
Absolute Salinity it can be shown that (Gill (1982), McDougall (1987a))  
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and using Eqn. (A.15.5) we arrive at the desired expression Eqn. (2.19.2) for θβ   
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Note that the terms in the natural logarithm of the square root of Absolute Salinity cancel 
from the two parts of the square brackets in Eqns. (A.15.5) and (A.15.7).   

In order to derive Eqn. (2.19.3) for β Θ  we first need an expression for A , .T pS∂Θ ∂   
This is found by differentiating with respect to Absolute Salinity the entropy equality 
( ) [ ]( )A A Aˆ, , , , ,S t p S S t pη η= Θ  obtaining  (using Eqns. (A.12.4) and (A.12.8))  
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Differentiating [ ]( )A Aˆ , , , ,S S t p pρ ρ= Θ  with respect to Absolute Salinity leads to 
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and using Eqn. (A.15.8) we arrive at the desired expression (2.19.3) for β Θ  namely  
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Note that the terms in the natural logarithm of the square root of Absolute Salinity cancel 
from the two parts of the square brackets in Eqns. (A.15.8) and (A.15.10).   
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