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Notes on the function gsw_IPV_vs_fNsquared_ratio(SA, CT, p)  
 

This function gsw_IPV_vs_fNsquared_ratio(SA,CT,p) evaluates the ratio of the 
planetary isopycnal-potential-vorticity, IPV , to 2fN , using the 48-term expression for 
density, ( )Aˆ , ,S pρ Θ .  This 48-term rational function expression for density is discussed in 
McDougall et al. (2011) and in appendix A.30 and appendix K of the TEOS-10 Manual 
(IOC et al. (2010)).  For dynamical oceanography we may take the 48-term rational function 
expression for density as essentially reflecting the full accuracy of TEOS-10.   

This function gsw_IPV_vs_fNsquared_ratio(SA,CT,p) evaluates the expression in Eqn. 
(3.20.5), namely  
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where the stability ratio Rρ  is  
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and the isopycnal slope ratio r  (obtainable from gsw_isopycnal_slope_ratio) is given by  
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Here follows section 3.20 of the TEOS-10 Manual (IOC et al. (2010)).   
 
 
3.20 Potential vorticity  
 
Planetary potential vorticity is the Coriolis parameter f  times the vertical gradient of a 
suitable variable.  Potential density is sometimes used for that variable but using potential 
density (i) involves an inaccurate separation between lateral and diapycnal advection 
because potential density surfaces are not a good approximation to neutral tangent planes 
and (ii) incurs the non-conservative baroclinic production term of Eqn. (3.13.4).  Using 
approximately neutral surfaces, “ans”, (such as Neutral Density surfaces) provides an 
optimal separation between the effects of lateral and diapycnal mixing in the potential 
vorticity equation.  In this case the potential vorticity variable is proportional to the 
reciprocal of the thickness between a pair of closely spaced approximately neutral 

http://www.teos-10.org/�


Notes on gsw_IPV_vs_fNsquared_ratio 2 
 

surfaces.  This planetary potential vorticity variable is called Neutral-Surface-Potential-
Vorticity ( NSPV  for short) and is related to 2fN  by   

( ){ }1 n 2 2 2
bansexp .z a P aNSPV g f fN g N T P dρ γ ρ− − Θ≡ − ≈ − ∇ Θ−Θ ∇ ⋅∫ l  (3.20.1) 

The exponential expression was derived by McDougall (1988) (his equation (47)) and is 
approximate because the variation of the saline contraction coefficient β Θ  with pressure 
was neglected in comparison with the larger proportional change in the thermal expansion 
coefficient αΘ  with pressure.  The integral in Eqn. (3.20.1) is taken along an approximately 
neutral surface from a location where NSPV  is equal to 2.fN   Interestingly the 
combination a P aP∇ Θ−Θ ∇  is simply the isobaric gradient of Conservative Temperature, 

,P∇ Θ  which is almost the same as the horizontal gradient, .z∇ Θ   A more accurate version 
of this equation which does not ignore the variation of the saline contraction coefficient 
can be shown to be  
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The exponential factor in Eqn. (3.20.2) is approximately the integrating factor b , defined 
as n ( )l l lb γ ρ ρ ρ≡ ∇ ⋅∇ ∇ ⋅∇  where A( )l Sρ ρ β αΘ Θ∇ ≡ ∇ − ∇Θ , which allows spatial integrals 
of n

A( ) lb S bρ β α ρ γΘ Θ∇ − ∇Θ = ∇ ≈ ∇  to be approximately independent of path for 
“vertical paths”, that is, for paths in surfaces whose normal has zero vertical component.   

The gradient a∇  of 2fN  is related to that of NSPV  by (from Eqns. (3.20.2) and (3.20.1))  

( ) ( ) ( )2 2 2 2 2
bln ln ( ) .a a P a P afN NSPV g N g N T Pρκ ρ− − Θ∇ − ∇ = − ∇ ≈ ∇ Θ−Θ ∇  (3.20.3) 

The deficiencies of 2fN  as a form of planetary potential vorticity have not been widely 
appreciated.  Even in a lake, and also in the simple situation where temperature does not 
vary along a density surface ( a∇ Θ = 0 ), the use of 2fN  as planetary potential vorticity is 
inaccurate since the right-hand side of (3.20.3) is then approximately  
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and the mere fact that the density surface has a slope (i. e. aP∇ ≠ 0 ) means that the 
contours of 2fN  will not be parallel to contours of NSPV  on the density surface.  (In this 
situation (where a∇ Θ = 0 ) the contours of NSPV  along approximately neutral surfaces 
coincide with those of isopycnal-potential-vorticity ( IPV ), the potential vorticity defined 
with respect to the vertical gradient of potential density by 1

zIPV fgρ ρ− Θ= − ).   
IPV  is related to 2fN  by (McDougall (1988))  
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so that the ratio of NSPV  to IPV  plotted on an approximately neutral surface is given by  
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You and McDougall (1991) show that because of the highly differentiated nature of 
potential vorticity, isolines of IPV  and NSPV  do not coincide even at the reference 
pressure rp  of the potential density variable (see equations (14) – (16) and Figure 14 of 
that paper).  NSPV , 2fN  and IPV  have the units 3s .−   The ratio 2IPV fN  is available in 
the GSW Oceanographic Toolbox as the function gsw_IPV_vs_fNsquared_ratio.  
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