Notes on the function gsw_CT_second_derivatives(SA,pt)

This function, gsw_CT_second_derivatives(SA,pt), evaluates the second derivatives of $\tilde{\Theta}\left(S_{\mathrm{A}}, \theta\right)$, namely

$$
\begin{equation*}
\tilde{\Theta}_{S_{\mathrm{A}} S_{\mathrm{A}}}, \quad \tilde{\Theta}_{\theta \theta} \quad \text { and } \quad \tilde{\Theta}_{S_{\mathrm{A}} \theta} . \tag{1}
\end{equation*}
$$

These second derivatives are found by taking finite differences of the first derivatives $\tilde{\Theta}_{S_{A}}$ and $\tilde{\Theta}_{\theta}$ obtained from gsw_CT_first_derivatives(SA,pt) over small increments of Absolute Salinity and potential temperature. The increments of Absolute Salinity are $\pm 0.001 \mathrm{~g} \mathrm{~kg}^{-1}$ and the increments of potential temperature are $\pm 0.01{ }^{\circ} \mathrm{C}$. If the input Absolute Salinity is less than $0.001 \mathrm{~g} \mathrm{~kg}^{-1}$ care is taken to ensure that the Absolute Salinity is never less than zero in any call to gsw_CT_first_derivatives(SA,pt).

The three outputs of this function, gsw_CT_second_derivatives(SA,pt), remain wellbehaved as the input Absolute Salinity approaches zero, including at $S_{\mathrm{A}}=0 \mathrm{~g} \mathrm{~kg}^{-1}$.

References

IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater - 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp. Available from http://www.TEOS-10.org

Here follows appendix A. 12 of the TEOS-10 Manual (IOC et al., 2010).

A. 12 Differential relationships between η, θ, Θ and S_{A}

Evaluating the fundamental thermodynamic relation in the forms (A.11.6) and (A.11.12) and using the four boxed equations in appendix A.11, we find the relations

$$
\begin{align*}
\left(T_{0}+t\right) \mathrm{d} \eta+\mu(p) \mathrm{d} S_{\mathrm{A}} & =\frac{\left(T_{0}+t\right)}{\left(T_{0}+\theta\right)} c_{p}(0) \mathrm{d} \theta+\left[\mu(p)-\left(T_{0}+t\right) \mu_{T}(0)\right] \mathrm{d} S_{\mathrm{A}} \\
& =\frac{\left(T_{0}+t\right)}{\left(T_{0}+\theta\right)} c_{p}^{0} \mathrm{~d} \Theta+\left[\mu(p)-\frac{\left(T_{0}+t\right)}{\left(T_{0}+\theta\right)} \mu(0)\right] \mathrm{d} S_{\mathrm{A}} \tag{A.12.1}
\end{align*}
$$

The quantity $\mu(p) \mathrm{d} S_{\mathrm{A}}$ is now subtracted from each of these three expressions and the whole equation is then multiplied by $\left(T_{0}+\theta\right) /\left(T_{0}+t\right)$ obtaining

$$
\begin{equation*}
\left(T_{0}+\theta\right) \mathrm{d} \eta=c_{p}(0) \mathrm{d} \theta-\left(T_{0}+\theta\right) \mu_{T}(0) \mathrm{d} S_{\mathrm{A}}=c_{p}^{0} \mathrm{~d} \Theta-\mu(0) \mathrm{d} S_{\mathrm{A}} \tag{A.12.2}
\end{equation*}
$$

From this follows all the following partial derivatives between η, θ, Θ and S_{A},

$$
\begin{array}{ll}
\left.\Theta_{\theta}\right|_{S_{\mathrm{A}}}=c_{p}\left(S_{\mathrm{A}}, \theta, 0\right) / c_{p}^{0}, & \left.\Theta_{S_{\mathrm{A}}}\right|_{\theta}=\left[\mu\left(S_{\mathrm{A}}, \theta, 0\right)-\left(T_{0}+\theta\right) \mu_{T}\left(S_{\mathrm{A}}, \theta, 0\right)\right] / c_{p}^{0}, \\
\left.\Theta_{\eta}\right|_{S_{\mathrm{A}}}=\left(T_{0}+\theta\right) / c_{p}^{0}, & \left.\Theta_{S_{\mathrm{A}}}\right|_{\eta}=\mu\left(S_{\mathrm{A}}, \theta, 0\right) / c_{p}^{0}, \\
\left.\theta_{\eta}\right|_{S_{\mathrm{A}}}=\left(T_{0}+\theta\right) / c_{p}\left(S_{\mathrm{A}}, \theta, 0\right), & \left.\theta_{S_{\mathrm{A}}}\right|_{\eta}=\left(T_{0}+\theta\right) \mu_{T}\left(S_{\mathrm{A}}, \theta, 0\right) / c_{p}\left(S_{\mathrm{A}}, \theta, 0\right), \\
\left.\theta_{\Theta}\right|_{S_{\mathrm{A}}}=c_{p}^{0} / c_{p}\left(S_{\mathrm{A}}, \theta, 0\right),\left.\quad \theta_{S_{\mathrm{A}}}\right|_{\Theta}=-\left[\mu\left(S_{\mathrm{A}}, \theta, 0\right)-\left(T_{0}+\theta\right) \mu_{T}\left(S_{\mathrm{A}}, \theta, 0\right)\right] / c_{p}\left(S_{\mathrm{A}}, \theta, 0\right), \\
\left.\eta_{\theta}\right|_{S_{\mathrm{A}}}=c_{p}\left(S_{\mathrm{A}}, \theta, 0\right) /\left(T_{0}+\theta\right), & \left.\eta_{S_{\mathrm{A}}}\right|_{\theta}=-\mu_{T}\left(S_{\mathrm{A}}, \theta, 0\right) \tag{A.12.7}
\end{array}
$$

$$
\begin{equation*}
\left.\eta_{\Theta}\right|_{S_{\mathrm{A}}}=c_{p}^{0} /\left(T_{0}+\theta\right),\left.\quad \quad \eta_{S_{\mathrm{A}}}\right|_{\Theta}=-\mu\left(S_{\mathrm{A}}, \theta, 0\right) /\left(T_{0}+\theta\right) . \tag{A.12.8}
\end{equation*}
$$

The three second order derivatives of $\hat{\eta}\left(S_{\mathrm{A}}, \Theta\right)$ are listed in Eqns. (P.14) and (P.15) of appendix P. The corresponding derivatives of $\hat{\theta}\left(S_{A}, \Theta\right)$, namely $\hat{\theta}_{\Theta}, \hat{\theta}_{S_{A}}, \hat{\theta}_{\Theta \Theta}, \hat{\theta}_{S_{A} \Theta}$ and $\theta_{S_{\mathrm{A}} S_{\mathrm{A}}}$ can also be derived using Eqn. (P.13), obtaining

$$
\begin{gather*}
\hat{\theta}_{\Theta}=\frac{1}{\tilde{\Theta}_{\theta}}, \quad \hat{\theta}_{S_{\mathrm{A}}}=-\frac{\tilde{\Theta}_{S_{\mathrm{A}}}}{\tilde{\Theta}_{\theta}}, \quad \hat{\theta}_{\Theta \Theta}=-\frac{\tilde{\Theta}_{\theta \theta}}{\left(\tilde{\Theta}_{\theta}\right)^{3}}, \quad \hat{\theta}_{S_{A} \Theta}=-\frac{\tilde{\Theta}_{\theta S_{\mathrm{A}}}}{\left(\tilde{\Theta}_{\theta}\right)^{2}}+\frac{\tilde{\Theta}_{S_{\mathrm{A}}} \tilde{\Theta}_{\theta \theta}}{\left(\tilde{\Theta}_{\theta}\right)^{3}}, \tag{A.12.9a,b,c,d}\\
\quad \text { and } \quad \hat{\theta}_{S_{\mathrm{A}} S_{\mathrm{A}}}=-\frac{\tilde{\Theta}_{S_{A} S_{\mathrm{A}}}}{\Theta_{\theta}}+2 \frac{\tilde{\Theta}_{S_{\mathrm{A}}}}{\tilde{\Theta}_{\theta}} \frac{\tilde{\Theta}_{\theta S_{\mathrm{A}}}}{\tilde{\Theta}_{\theta}}-\left(\frac{\tilde{\Theta}_{S_{\mathrm{A}}}}{\tilde{\Theta}_{\theta}}\right)^{2} \frac{\tilde{\Theta}_{\theta \theta}}{\tilde{\Theta}_{\theta}}, \tag{A.12.10}
\end{gather*}
$$

in terms of the partial derivatives $\tilde{\Theta}_{\theta}, \tilde{\Theta}_{S_{\mathrm{A}}}, \tilde{\Theta}_{\theta \theta}, \tilde{\Theta}_{\theta S_{\mathrm{A}}}$ and $\tilde{\Theta}_{S_{\mathrm{A}} S_{\mathrm{A}}}$ which can be obtained by differentiating the polynomial $\tilde{\Theta}\left(S_{\mathrm{A}}, \theta\right)$ from the TEOS-10 Gibbs function.

