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Notes on the function gsw_CT_second_derivatives(SA,pt)  
 

This function, gsw_CT_second_derivatives(SA,pt), evaluates the second derivatives of 
( )A ,S θΘ , namely  

A AS SΘ ,      θθΘ       and      
AS θΘ  . (1) 

These second derivatives are found by taking finite differences of the first derivatives 
ASΘ  

and θΘ  obtained from gsw_CT_first_derivatives(SA,pt) over small increments of 
Absolute Salinity and potential temperature.  The increments of Absolute Salinity are 

10.001 g kg−±  and the increments of potential temperature are 0.01 C± ° .  If the input 
Absolute Salinity is less than 10.001 g kg−  care is taken to ensure that the Absolute Salinity 
is never less than zero in any call to gsw_CT_first_derivatives(SA,pt).    

The three outputs of this function, gsw_CT_second_derivatives(SA,pt), remain well-
behaved as the input Absolute Salinity approaches zero, including at 1

A 0 g kgS −= .   
 
 
References  
IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of seawater – 2010: 

Calculation and use of thermodynamic properties.  Intergovernmental Oceanographic 
Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp.  Available from 
http://www.TEOS-10.org    

 
 
Here follows appendix A.12 of the TEOS-10 Manual (IOC et al., 2010).   
 
 
A.12 Differential relationships between , ,η θ Θ  and AS   

 
Evaluating the fundamental thermodynamic relation in the forms (A.11.6) and (A.11.12) 
and using the four boxed equations in appendix A.11, we find the relations  
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The quantity ( ) Adp Sµ  is now subtracted from each of these three expressions and the 
whole equation is then multiplied by ( ) ( )0 0T T tθ+ +  obtaining  

( ) ( ) ( ) ( ) ( )0
0 0 A Ad 0 d 0 d d 0 d .p T pT c T S c Sθ η θ θ µ µ+ = − + = Θ −  (A.12.2) 

From this follows all the following partial derivatives between , ,η θ Θ  and A,S   
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A

0
0 ,pS c Tη θΘ = +                      ( ) ( )A A 0, ,0 .S S Tη µ θ θ

Θ
= − +  (A.12.8) 

The three second order derivatives of ( )Aˆ ,Sη Θ  are listed in Eqns. (P.14) and (P.15) of 
appendix P.  The corresponding derivatives of ( )A

ˆ ,Sθ Θ , namely θ̂Θ , 
AŜθ , θ̂ΘΘ , 

AŜθ Θ  and 

A AŜ Sθ  can also be derived using Eqn. (P.13), obtaining  
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in terms of the partial derivatives θΘ , 
ASΘ , θθΘ , 

ASθΘ  and 
A AS SΘ  which can be obtained 

by differentiating the polynomial ( )A,S θΘ  from the TEOS-10 Gibbs function.   
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