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Notes on the function gsw_CT_from_rho(rho,SA,p)  
Notes written 16th April 2011  

 
This function, gsw_CT_from_rho(rho,SA,p) calculates the Conservative Temperature Θ  
corresponding to the input values of in situ density, rho, Absolute Salinity, SA, and 
pressure, p.  The function returns NaNs if  

(i) the input density is too small (which would require Θ  to exceed 40 C° ), if  
(ii) the input density exceeds the density at the temperature of maximum density (as 

given by gsw_CT_maxdensity(SA,p)), or if  
(ii) the temperature is less than the freezing temperature as given by 

gsw_CT_freezing(SA,p) (implying that we are assuming that at the freezing 
temperature, the seawater is saturated with air).   

 
This function, gsw_CT_from_rho(rho,SA,p), uses the 48-term rational function 

expression for density ( )48
Aˆ , ,S pρ ρ= Θ  as described in McDougall et al. (2011) and in 

appendix A.30 and appendix K of the TEOS-10 Manual (IOC et al. (2010)).   
 

This function begins by calculating the freezing temperature, CT_freezing, and the 
thermal expansion coefficient, gsw_alpha_wrt_CT(SA,CT_freezing,p) at this temperature.  
If this thermal expansion coefficient is positive and exceeds 5 11 10 Kx − − , a modified 
Newton-Raphson iterative solution procedure is performed with an initial Θ value given 
by solving a quadratic in Θ , given the thermal expansion coefficient at the freezing 
temperature and the value of density at 40 CΘ = ° , as given by gsw_rho_CT(SA,40,p).  
This quadratic is based on a Taylor series expression for density, expanded about the 
freezing temperature.   

If the thermal expansion coefficient at the freezing temperature is less than 5 11 10 Kx − −  
(which occurs only for Absolute Salinities less than approximately 128 g kg− , depending on 
pressure), the temperature of maximum density is found from 
gsw_CT_maxdensity(SA,p).  Again a simple quadratic for Conservative Temperature is 
solved using the density at this value of Θ and the density at 40 CΘ = ° .  This quadratic 
gives two solutions, and if the larger of the two solutions exceeds 
gsw_CT_maxdensity(SA,p) by more than 5 C°  there will be only one non-frozen solution 
and we find this solution by the modified Newton-Raphson technique.   

If the larger of these two quadratic solutions exceeds gsw_CT_maxdensity(SA,p) by 
less than 5 C°  we avoid using the modified Newton-Raphson method and instead solve 
for temperature assuming that the variation of density with Θ is a quadratic function of 
Θ about the temperature of maximum density.  This is done iteratively, with each iteration 
using the previous iteration to effectively estimate ρΘΘ  at the temperature of maximum 
density.  In this part of the code, care is taken to distinguish cases where there are two 
valid solutions, both of which exceed the freezing temperature, from the situation where 
this is only one such solution.   

When the modified Newton-Raphson method is used, three iterations are performed 
after which the density of the solution equals that of the input density to machine 
precision ( 12 31.6 10 kg mx − − ).  When the iterative quadratic method is used, seven iterations 
are performed after which the density of each non-frozen solution equals that of the input 
density to machine precision ( 13 34.6 10 kg mx − − ).   
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This function gsw_CT_from_rho(rho,SA,p) is called as  

[CT,CT_multiple] = gsw_CT_from_rho(rho,SA,p) 

and if there is a valid second solution, it is returned as CT_multiple.  When there is only 
one solution, CT_multiple is a Nan.  When there are no solutions, both CT and 
CT_multiple are Nans.   
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Here follows appendix A.30 and appendix K of the TEOS-10 Manual (IOC et al. (2010)).   
 
 
A.30 Computationally efficient 48-term expression for the density of seawater  
        in terms of Θ   
Ocean models to date have treated their salinity and temperature variables as being 
Practical Salinity PS  and potential temperature θ .  Ocean models that are TEOS-10 
compatible need to carry Preformed Salinity *S  and Conservative Temperature Θ  as their 
conservative prognostic variables (as discussed in appendices A.20 and A.21), and they 
need a computationally efficient expression for density in terms of Absolute Salinity AS , 
Conservative Temperature Θ  and pressure p .   

Following the work of McDougall et al. (2003) and Jackett et al. (2006), the TEOS-10 
density ρ  has been approximated by a 48-term rational.  The fitted expression is the ratio 
of two polynomials of ( )A , ,S pΘ   

48 48 48
num denomP Pρ ρρ ρ≈ = . (A.30.1) 

The density data has been fitted in a “funnel” of data points in ( )A , ,S pΘ  space which is 
described in more detail in McDougall et al. (2011b).  The “funnel” extends to a pressure of 
8000 dbar .  At the sea surface the “funnel” covers the full range of temperature and 
salinity while for pressures greater than 6500 dbar, the maximum temperature of the fitted 
data is 10 C°  and the minimum Absolute Salinity is 130 g kg− .  That is, the fit has been 
performed over a region of parameter space which includes water that is approximately 
8 C°  warmer and 15 g kg−  fresher in the deep ocean than the seawater which exists in the 
present ocean.  Table K.1 of appendix K contains the 48 coefficients of the expression 
(A.30.1) for density in terms of ( )A , ,S pΘ .   

http://www.teos-10.org/�
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As outlined in appendix K, this 48-term rational-function expression for ρ  yields the 
thermal expansion and haline contraction coefficients, αΘ  and βΘ , that are essentially as 
accurate as those derived from the full TEOS-10 Gibbs function for data in the 
“oceanographic funnel”.  The sound speed derived by differentiating Eqn. (A.30.1) with 
respect to pressure has an r.m.s. error in the “funnel” of 10.067 m s−  whereas TEOS-10 fits 
the available sound speed data with an rms error of only 10.035 m s−  (Table O.1 of 
appendix O), so the sound speed obtained from the 48-term expression for density is not 
quite as accurate as from the full TEOS-10 expression.   

In dynamical oceanography it is the thermal expansion and haline contraction 
coefficients αΘ  and βΘ  which are the most important aspects of the equation of state 
since the “thermal wind” is proportional to Ap pSα βΘ Θ∇ Θ − ∇  and the vertical static 
stability is given in terms of the buoyancy frequency N  by 1 2

A( )z zg N Sα β− Θ Θ= Θ − .  
Hence for dynamical oceanography we may take the 48-term rational function expression 
for density, Eqn. (A.30.1), as essentially reflecting the full accuracy of TEOS-10.  This is 
confirmed in Fig. A.30.1 where the error in using the 48-term expression for density to 
calculate the isobaric northward density gradient is shown.  The vertical axis on this figure 
is the magnitude of the difference in the northward isobaric density gradient in the world 
ocean below 1000m  when evaluated using Eqn. (A.30.1) versus using the full TEOS-10 
Gibbs function.  The scales of the axes of this figure have been chosen to be the same as 
those of Fig. A.5.1 of appendix A.5 so that the smallness of the errors incurred by using the 
48-term density expression can be appreciated.  By comparing Figs. A.30.1 and A.5.1 it is 
clear that the much more important issue is to properly represent the effects of seawater 
composition on seawater density, and this aspect of ocean science is in its infancy.  The 
rms value of the vertical axis in Fig. A.30.1 is 4.6% of that of Fig. A.5.1.   

 
Figure A.30.1.  The northward density gradient at constant pressure (the horizontal  
                           axis) for data in the world ocean atlas of Gouretski and Koltermann  
                           (2004) for 1000 dbar.p >   The vertical axis is the magnitude of the 
                           difference between evaluating the density gradient using the 48-term  
                           expression Eqn. (A.30.1) instead of using the full TEOS-10 expression, 
                           using Absolute Salinity AS  as the salinity argument in both cases.   

 
Appendix P describes how an expression for the enthalpy of seawater in terms of 

Conservative Temperature, specifically the functional form ( )A
ˆ , ,h S pΘ , together with an 

expression for entropy in the form ( )Aˆ ,Sη Θ , can be used as an alternative thermodynamic 
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potential to the Gibbs function ( )A , ,g S t p .  The need for the functional form ( )A
ˆ , ,h S pΘ  

also arises in section 3.32 and in Eqns. (3.26.3) and (3.29.1).  The 48-term expression, Eqn. 
(A.30.1), for ( )48 48

Aˆ , ,S pρ ρ= Θ  can be used to find a closed expression for ( )A
ˆ , ,h S pΘ  by 

integrating the reciprocal of ( )48
Aˆ , ,S pρ Θ  with respect to pressure (in Pa ), since 

1ˆ
Ph v ρ−= =  (see Eqn. (2.8.3)).   

The 48-term expression for specific volume, Eqn. (A.30.1), is first written explicitly as 
the ratio of two polynomials in sea pressure p  (in dbar ) as  

2 3
48 0 1 2 3

48 2
0 1 2

1ˆ
ˆ 2

a a p a p a pv
b b p b pρ
+ + +

= =
+ +

, (A.30.2) 

where the coefficients 0a  to 3a  and 0b  to 2b  are the following functions of AS  and Θ   

( )
( ) ( )

2 3 4 2 3 4
0 21 22 23 24 25 A 26 27 28 29 30

1.5 2 3 4 2
A 31 32 33 34 35 36 A ,

a v v v v v S v v v v v

S v v v v v v S

= + Θ + Θ + Θ + Θ + + Θ + Θ + Θ + Θ

+ + Θ + Θ + Θ + Θ +
  

( )2 3
1 37 38 39 40 A 41 42a v v v v S v v= + Θ + Θ + Θ + + Θ ,  

2
2 43 44 45 46 Aa v v v v S= + Θ + Θ + Θ ,  

3 47 48a v v= + Θ ,  

( ) ( ) ( )1.52 3 2 2 3
0 01 02 03 04 A 05 06 07 A 08 09 10 11 ,b v v v v S v v v S v v v v= + Θ + Θ + Θ + + Θ + Θ + + Θ + Θ + Θ  

( )( )2
1 12 13 14 A 15 160.5 ,b v v v S v v= + Θ + Θ + + Θ   

2
2 17 18 19 20 A ,b v v v v S= + Θ + Θ +   

and the numbered coefficients 1v  to 48v  can be found in Table K.1 (note that 21 1v = ).   
It is not difficult to rearrange Eqn. (A.30.2) into the form  

( )48 48 3 1 32
A 2 2

2 22 0 1 2

2ˆ ˆ , , ,
2

a b aa N Mpv v S p p
b bb b b p b p

  +
= Θ = − + +   + + 

 (A.30.3) 

where N  and M  are given by  

3 0 1 2 0
0 2

22

2 .a b b a bN a
bb

= + −          and        1
2

3 3 0 2 1
1 2

2 22

4 2a b a b a bM a
b bb

= + − − . (A.30.4) 

The pressure integral of the last term in Eqn. (A.30.3) is well known (see for example 
section 2.103 of Gradshteyn and Ryzhik (1980)) and is dependent on the sign of the 
discriminant of the denominator.  In our case it can be shown that 2

1 0 2b b b>  over the full 
TEOS-10 ( )A , ,S pΘ  domain, and also that both 0b is positive while both 1b  and 2b  are 
negative and bounded away from zero.  The indefinite integral, with respect to sea 
pressure measured in Pa , of the last term in Eqn. (A.30.3) is (with  * 410N N=  and 

* 410M M= )  
2* * *

2 1 1 0 22 2 1
0 1 22 2 2

20 1 2 2 1 0 2 2 1 1 0 2

ln 2 ln
22 2

b p b b b bN Mp M N b M bdP b b p b p
bb b p b p b b b b b p b b b b

∫
+ − −+ −′ = + + +

+ + − + + −
, (A.30.5) 

The enthalpy ( )48
A

ˆ , ,h S pΘ  is the definite integral of Eqn. (A.30.3) from 0P  to P , plus 0
pc Θ , 

being the value of enthalpy at 0P  (i. e. at 0 dbarp = ).  Hence the full expression for 
( )48

A
ˆ , ,h S pΘ  is (with 2

1 1 0 2A b b b b= − −  and 2
1 1 0 2B b b b b= + − )  
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( )

( )
( )
( )

48 0 4 4 23 1 32
A 2

2 22

* *1
*

21 2 2 2

2 0 0 2

2ˆ , , 10 10
2

2ln 1 ln 1 .
2

p
a b aah S p c p p

b bb
bN M

B Ab b b bM p p p
b b b B A A B b p

 
Θ = Θ + − +  

 

−
 − 

+ + + + +    − +   

  (A.30.6) 

The factor of 410  that appears here and in *N  and *M  effectively serves to convert the 
units of the integration variable from dbar  to Pa  so that ( )48

A
ˆ , ,h S pΘ  has units of 1J kg .−   

In these equations AS  is in 1g kg− , Θ  in C°  and p  is in dbar.   The arguments of the two 
natural logarithms in Eqn. (A.30.6) are always positive; over the full TEOS-10 ( )A , ,S pΘ  
domain the argument of the first logarithm term is between 0.4 and 1.0 while the 
argument of the second logarithm term is between 1.0 and 3.5 (note that both 2b  and A  
are negative while B  is positive).  Specific enthalpy calculated from Eqn. (A.30.6) is 
available in the GSW Oceanographic Toolbox as the function gsw_enthalpy_CT.  The 
evaluation of ( )48

A
ˆ , ,h S pΘ  via Eqn. (A.30.6) takes just 12% more computer cpu time than 

the evaluation of ( )48
Aˆ , ,v S pΘ  via a computationally efficient (Hornered in terms of A, SΘ  

and p ) version of Eqn. (A.30.1).  The use of Eqn. (A.30.6) and gsw_enthalpy_CT to 
evaluate ( )48

A
ˆ , ,h S pΘ  is 9 times faster than first evaluating the in situ temperature t  (from 

gsw_t_from_CT(SA,CT,p)) and then calculating enthalpy from the full Gibbs function 
expression ( )A, ,h S t p  using gsw_enthalpy_t_exact(SA,t,p).  (These last two function calls 
have also been combined into the one function, gsw_enthalpy_CT_exact(SA,CT,p).)  

Also, when the enthalpy difference at the same values of AS  and Θ  but at different 
pressures (see Eqn. (3.32.2)) is evaluated using Eqn. (A.30.6), the expression can also be 
arranged to contain only two logarithm terms (McDougall et al. (2011b)).  This enthalpy 
difference is available as the function gsw_enthalpy_diff_CT in the GSW Toolbox.   

Following Young (2010), the difference between h  and 0
pc Θ  may be called “dynamic 

enthalpy” and can be calculated from Eqn. (A.30.6), recognizing that this equation is based 
on the 48-term expression for density of McDougall et al. (2011b) rather than on the full 
TEOS-10 Gibbs function.  Dynamic enthalpy is available in the GSW Oceanographic 
Toolbox as the function gsw_dynamic_enthalpy_CT(SA,CT,p).  Similarly, the partial 
derivatives of ( )48

A
ˆ , ,h S pΘ  with respect to Absolute Salinity AS  and with respect to 

Conservative Temperature Θ  can be calculated either by algebraic differentiation of Eqn. 
(A.30.6) or by first algebraically differentiating Eqn. (A.30.1) and then numerically 
integrating this expression with respect to pressure (this second procedure is motivated by 
taking the appropriate AS  or Θ  derivatives of Eqn. (3.2.1); see Eqns. (A.18.4) and (A.18.5)) 
and also Eqns. (A.11.15) and (A.11.18).  
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Appendix K: Coefficients of 48-term expression for 
the density of seawater in terms of Θ  

 
 
The TEOS-10 Gibbs function of seawater ( )A , ,g S t p  is written as a polynomial in terms of 
in situ temperature t , while for ocean models, density needs to be expressed as a 
computationally efficient expression in terms of Conservative Temperature Θ .  
McDougall et al. (2011b) have fitted the TEOS-10 values of density ρ  to A ,S Θ  and p  in a 
“funnel” of data points in ( )A , ,S pΘ  space.  The fitted expression is in the form of a 
rational function, being the ratio of two polynomials of ( )A , ,S pΘ   

48 48
num denomP Pρ ρρ = . (K.1) 

The “funnel” of data points in ( )A , ,S pΘ  space is shown in Figure K.1 and is described in 
more detail in McDougall et al. (2011b); at the sea surface it covers the full range of 
temperature and salinity while for pressure greater than 6500 dbar, the maximum 
temperature of the fitted data is 10 C°  and the minimum Absolute Salinity is 130 g kg− .  
The maximum pressure of the “funnel” is 8000 dbar .  Table K.1 contains the 48 coefficients 
of the expression (K.1) for density in terms of ( )A , ,S pΘ .  The coefficients 1 20v v−  in this 
table have units of 3kg m−  and the coefficients 21 48v v−  are dimensionless, and the 
normalizing values of A ,S Θ  and p  are 11 g kg− , 1 K  and 1 dbar  respectively.   

The rms error of this 48-term approximation to the TEOS-10 density over the “funnel” 
is 30.00046 kg m− ; this can be compared with the rms uncertainty of 30.004 kg m−  of the 
underlying laboratory density data to which the TEOS-10 Gibbs function was fitted (see 
the first two rows of Table O.1 of appendix O).  Similarly, the appropriate thermal 
expansion coefficient,  

A ,

1

S p

ρα
ρ

Θ ∂
= −

∂Θ
, (K.2) 

of the 48-term equation of state is different from the same thermal expansion coefficient 
evaluated from TEOS-10 with an rms error in the “funnel” of 6 10.069 10 Kx − − , compared 
with the rms error of the thermal expansion coefficient of the laboratory data to which the 
Feistel (2008) Gibbs function was fitted of 6 10.73 10 Kx − −  (see row six of Table O.1 of 
appendix O).  In terms of the evaluation of density gradients, the haline contraction 
coefficient evaluated from Eqn. (K.1) is many times more accurate than the thermal 
expansion coefficient.  Hence we may consider the 48-term rational function expression for 
density, Eqn. (K.1), to be equally as accurate as the full TEOS-10 expressions for density, 
for the thermal expansion coefficient and for the saline contraction coefficient for data that 
reside inside the “oceanographic funnel”.  

The sound speed evaluated from the 48-term rational function Eqn. (K.1), has an rms 
error over the “funnel” of 10.067 m s−  which is almost twice the r.m.s. error of the 
underlying sound speed data that was incorporated into the Feistel (2008) Gibbs function, 
being 10.035 m s−  (see rows 7 to 9 of Table O.1 of appendix O).  Hence, the 48-term 
expression for density is not quite as accurate as the full TEOS-10 for evaluating sound 
speed in the ocean.  But for dynamical oceanography where αΘ  and βΘ  are the aspects of 
the equation of state that, together with spatial gradients of AS  and Θ , drive ocean 
currents and affect the calculation of the buoyancy frequency, we may take the 48-term 
rational-function expression for density, Eqn. (K.1), as essentially reflecting the full 
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accuracy of TEOS-10.  The accuracy of the 48-term rational function expression for density 
is illustrated as a function of pressure in Fig. K.2.  

The use of Eqn. (K.1) to evaluate ( )48
Aˆ , ,S pρ Θ  from gsw_rho_CT(SA,CT,p) is 6.4 

times faster than first evaluating the in situ temperature t  (from 
gsw_t_from_CT(SA,CT,p)) and then calculating in situ density from the full Gibbs 
function expression ( )A, ,S t pρ  via gsw_rho_t_exact(SA,t,p).  (These last two function calls 
have been combined into gsw_rho_CT_exact(SA,CT,P).)   
 

 48
numPρ  Coefficients ( 3kg m− )  48

denomPρ  Coefficients (unitless) 

01v     9.998 420 897 506 056 x 102 
21v   1.0 

02v  Θ   2.839 940 833 161 907 x 100 22v  Θ   2.775 927 747 785 646 x 10-3 

03v  2Θ   -3.147 759 265 588 511 x 10-2  23v  2Θ  -2.349 607 444 135 925 x 10-5 

04v  3Θ    1.181 805 545 074 306 x 10-3 24v  3Θ   1.119 513 357 486 743 x 10-6 

05v  AS  -6.698 001 071 123 802 x 100 25v  4Θ    6.743 689 325 042 773 x 10-10 

06v  AS Θ  -2.986 498 947 203 215 x 10-2 26v  AS  -7.521 448 093 615 448 x 10-3 

07v  2
AS Θ    2.327 859 407 479 162 x 10-4 27v  AS Θ  -2.764 306 979 894 411 x 10-5 

08v  ( )1.5
AS  -3.988 822 378 968 490 x 10-2 28v  2

AS Θ   1.262 937 315 098 546 x 10-7 

09v  ( )1.5
AS Θ   5.095 422 573 880 500 x 10-4 29v  3

AS Θ    9.527 875 081 696 435 x 10-10 

10v  ( )1.5 2
AS Θ  -1.426 984 671 633 621 x 10-5 30v  4

AS Θ   -1.811 147 201 949 891 x 10-11 

11v  ( )1.5 3
AS Θ   1.645 039 373 682 922 x 10-7 31v  ( )1.5

AS  -3.303 308 871 386 421 x 10-5 

12v  p  -2.233 269 627 352 527 x 10-2 32v  ( )1.5
AS Θ   3.801 564 588 876 298 x 10-7 

13v  pΘ  -3.436 090 079 851 880 x 10-4 33v  ( )1.5 2
AS Θ  -7.672 876 869 259 043 x 10-9 

14v  2pΘ   3.726 050 720 345 733 x 10-6 34v  ( )1.5 3
AS Θ   -4.634 182 341 116 144 x 10-11 

15v  ApS  -1.806 789 763 745 328 x 10-4 35v  ( )1.5 4
AS Θ    2.681 097 235 569 143 x 10-12 

16v  Ap SΘ   6.876 837 219 536 232 x 10-7 36v  2
AS   5.419 326 551 148 740 x 10-6 

17v  2p  -3.087 032 500 374 211 x 10-7 37v  p  -2.742 185 394 906 099 x 10-5 

18v  2p Θ  -1.988 366 587 925 593 x 10-8 38v  pΘ  -3.212 746 477 974 189 x 10-7 

19v  2 2p Θ   -1.061 519 070 296 458 x 10-11 39v  2pΘ   3.191 413 910 561 627 x 10-9 

20v  2
Ap S     1.550 932 729 220 080 x 10-10 40v  3pΘ   -1.931 012 931 541 776 x 10-12 

   41v  ApS  -1.105 097 577 149 576 x 10-7 
   42v  Ap SΘ    6.211 426 728 363 857 x 10-10 
   43v  2p  -1.119 011 592 875 110 x 10-10 
   44v  2p Θ  -1.941 660 213 148 725 x 10-11 
   45v  2 2p Θ  -1.864 826 425 365 600 x 10-14 
   46v  2

Ap SΘ    1.119 522 344 879 478 x 10-14 
   47v  3p  -1.200 507 748 551 599 x 10-15 
   

48v  3p Θ    6.057 902 487 546 866 x 10-17 

 

TABLE K.1  Coefficients of the polynomials ( )48
num A , ,P S pρ Θ  and ( )48

denom A , ,P S pρ Θ  that  
                     define the 48-term rational-function Eqn. (K.1) for density.  
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Figure K.1.  The ranges of Absolute Salinity and Conservative Temperature in the  
                     “Oceanographic funnel” (the blue lines) in which the 48-term expression  
                       for density was fitted.  The red lines shows the minimum and maximum  
                       values of Absolute Salinity and Conservative Temperature that occur in a 
                       hydrographic ocean atlas of the world ocean (Gouretski and Koltermann 
                      (2004)).   

 

 
Figure K.2.  The errors in using the 48-term rational function expression for density,  
                      Eqn. (K.1), to evaluate density, the thermal expansion coefficient, the  
                      saline contraction coefficient and sound speed.  The red and green  
                      lines are the r.m.s. and maximum errors for seawater in the  
                      “oceanographic funnel” of McDougall et al. (2011b), while the blue and  
                      black lines are the r.m.s. and maximum errors for data in the world ocean  
                      atlas of Gouretski and Koltermann (2004).   
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