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Notes on the function,  
gsw_CT_freezing(SA,p,saturation_fraction),  

which evaluates the Conservative Temperature at which seawater freezes 
 

This function, gsw_CT_freezing, finds the Conservative Temperature (ITS-90 C° ) at 
which seawater of Absolute Salinity SA (in 1g kg− ) freezes at pressure p (dbar).  The third 
argument is optional and is the saturation fraction (between 0 and 1) of the dissolved air in 
seawater.  If this third argument is missing, the seawater is taken to be saturated with 
dissolved air (i. e. saturation_fraction is put equal to 1).   

This function is a polynomial fit to the TEOS-10 freezing temperature over the range in 
AS p−  space between 10 g kg−  and 1120 g kg−  and between 0 dbar  and 10,000 dbar  

(100 MPa ).  There is a triangle of data in AS p−  space at the largest pressures and 
Absolute Salinities (see below) where TEOS-10 does not provide the freezing temperature, 
and neither does this gsw_CT_freezing function return an answer in this triangle.  We 
have chosen to do the polynomial fit for the Conservative Temperature at which seawater 
freezes rather than the in situ freezing temperature because ocean models will have 
Conservative Temperature as their temperature variable.  The in situ temperature at which 
seawater freezes can be found by first using the present function, gsw_CT_freezing, and 
then calling the function gsw_t_from_CT.  These two function calls can be performed 
together by simply calling the GSW function gsw_t_freezing(SA,p,saturation_fraction).   

The in situ freezing temperature is the temperature ft  at which the chemical potential 
of water in seawater Wµ  equals the chemical potential of ice Ihµ , and ft  is found by 
solving Eqn. (3.33.2) of the TEOS-10 Manual (IOC et al. (2010), see below).  The in-situ 
freezing temperature can be found by this exact method using the function 
sea_ice_freezingtemperature_si in the SIA library of TEOS-10, available from 
www.TEOS-10.org.  The TEOS-10 Gibbs function for seawater is valid in the ranges 

1 1
A0 g kg 42 g kgS− −≤ ≤  and 0 dbar 10,000 dbarp≤ ≤ .  Additionally, at 0 dbarp =  

TEOS-10 is valid for Absolute Salinity up to where a constituent of seawater first saturates 
and come out of solution.  This typically occurs at an Absolute Salinity of between 

190 g kg−  and 1110 g kg−  (Feistel and Marion (2007), Marion et al. (2009)).  Technically we 
should restrict the range of applicability of our polynomial fit to this area of AS p−  space 
plus the line at 0 dbarp =  up to the Absolute Salinity of saturation, but the work of Feistel 
and Marion (2007) (see their figure 15) suggests that the freezing temperatures calculated 
using the TEOS-10 Gibbs function at high pressures beyond 1

A 42 g kgS −=  will not 
contain gross errors.   

In the region of validity of the TEOS-10 Gibbs function, the r.m.s. accuracy of the 
freezing temperature is estimated to be 1.5mK  (see section 6.3, figure 4 and table 7 of 
Feistel (2008)).  The polynomial of gsw_CT_freezing fits the full TEOS-10 Θ  freezing 
temperature to within 0.6mK±  over both the valid TEOS-10 AS p−  range and the 
extrapolated region.  Hence we conclude that the use of gsw_CT_freezing is essentially as 
accurate as the full TEOS-10 approach for calculating the freezing temperature.  The SIA 
code of TEOS-10 from which we obtained the freezing temperatures that underlie this fit 
returns values for the freezing temperature down to about 12 C− ° .  This in situ freezing 
temperature corresponds approximately to the line in ( )A ,S p  space connecting 
( )150g kg , 10 000dbar−  to ( )1120g kg , 5 000dbar− , and gsw_CT_freezing and 
gsw_t_freezing return Nans if the input Absolute Salinity and pressure lie beyond this 
line in AS p−  space.   

 

http://www.teos-10.org/�
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The polynomial of this gsw_CT_freezing function, for air-free seawater, is  

/2freeze 7 3 A
00 12 0

CT
C 10000 dbar100 g kg

j k

jk
j k

S pc c −= =
∑ ∑

     
= +     °    

 air-free seawater   (1) 

where the coefficients are   
 

00c  =   0.017947064327968736; 

20c  =  -6.076099099929818; 

30c  =   4.883198653547851; 

40c  = -11.88081601230542; 

50c  =  13.34658511480257; 

60c  =  -8.722761043208607; 

70c  =   2.082038908808201; 

01c  =  -7.389420998107497; 

21c  =  -0.9891538123307282; 

31c  =  -0.08987150128406496; 

41c  =   1.054318231187074; 

51c  =   0.3850133554097069; 

61c  =  -2.079022768390933; 

71c  =   1.242891021876471; 

02c  =  -2.110913185058476; 

22c  =   0.3831132432071728; 

32c  =   1.065556599652796; 

42c  =  -2.078616693017569; 

52c  =   1.596435439942262; 

03c  =   0.2295491578006229;  

23c  =  -0.7997496801694032; 

33c  =   0.8756340772729538; 

43c  =   0.1338002171109174; 

Note that there are no coefficients with 1j = , as the square root of Absolute Salinity does 
not appear in the TEOS-10 polynomial for the chemical potential of water in seawater, 

Wµ .  The in situ freezing temperature ft  of air-free pure water at 0 dbarp =  is known 
very accurately (with an uncertainty of only 2 Kµ ) to be 0.002519 C° .  In terms of 
Conservative Temperature Θ  this is 0.017947064327968736 C°  (since 
gsw_CT_from_pt(0,0.002519) =  0.017947064327968736 C° ), and this is the value of 00c  
above.    
 



Notes on gsw_CT_freezing 3 

The presence of dissolved air in seawater  

If there is dissolved air in seawater, the freezing temperature is lowered.  The 
depression of the in situ freezing temperature of pure water (i.e. 1

A 0 g kgS −= ) 
at 0 dbarp =  is 2.4 mK, while for Standard Seawater with 1

A 35.165 04 g kgS −=  the in situ 
freezing temperature depression is 1.9 mK.  The variation of the θ  freezing point 
depression is normally taken to be a linear function of salinity (section 6.3 of Feistel 
(2008)).   

The rate at which Conservative Temperature changes with potential temperature at 
fixed Absolute Salinity θΘ  is given by (see Eqn. (A.12.3a) of the TEOS-10 manual (IOC et 
al. (2010))  

( )
A

A
0

, ,0p

S p

c S
cθ
θ

θ
∂Θ

Θ = =
∂

 , (2) 

showing that θΘ  is proportional to the specific heat of seawater at 0 dbarp = , and we 
note that ( )A , ,0pc S θ  is approximately a linear function of Absolute Salinity (see Figure 4 
of the TEOS-10 manual).  We use this approximate linear variation of θΘ  with AS  to 
motivate the Θ  freezing temperature depression in terms of the θ  freezing temperature 
depression, obtaining the following final expression for the Θ  freezing temperature,  

( ) ( ) ( )

/2freeze 7 3 A
00 12 0

3A A
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CT
C 10000 dbar100 g kg

saturation_fraction 2.4 1 1 10 ,
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    − − + −
    

    

  (3) 

with a  = 0.502500117621  and b  = 0.057000649899720 .  These two coefficients have been 
chosen so that the in situ temperature freezing point depression for air-saturated seawater 
at 0 dbarp = is exactly 2.4 mK at 1

A 0 g kgS −=  and exactly 1.9 mK at 1
A 35.165 04 g kgS −= .   
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Here follows sections 3.33, 3.34 and 3.42 of the TEOS-10 Manual (IOC et al. (2010)).   
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3.33 Freezing temperature  
 
Freezing occurs at the temperature ft  at which the chemical potential of water in seawater 

Wµ  equals the chemical potential of ice Ihµ .  Thus, ft  is found by solving the implicit 
equation  

( ) ( )W Ih
A f f, , ,S t p t pµ µ=  (3.33.1) 

or equivalently, in terms of the two Gibbs functions,  

( ) ( ) ( )A
Ih

A f A A f f, , , , , .Sgg S t p S S t p g t p− =  (3.33.2) 

The Gibbs function for ice Ih, ( )Ih , ,g t p  is defined by IAPWS-06 (IAPWS (2009a)) and 
Feistel and Wagner (2006) and is summarized in appendix I below.  In the special case of 
zero salinity, the chemical potential of water in seawater reduces to the Gibbs function of 
pure water, ( ) ( )W W0, , , .t p g t pµ =   A simple correlation function for the melting pressure 
as a function of temperature is available from IAPWS (2008b) and has been implemented 
in the SIA library.   

At the ocean surface, p  = 0 dbar, from Eqn. (3.33.1) the TEOS-10 freezing point of pure 
water is ( )1

f 0g kg , 0dbart −  = 0.002 519 °C with an uncertainty of only 2 μK , noting that the 
triple point temperature of water is exactly 273.16 K by definition of the ITS-90 
temperature scale. The freezing temperature of the standard ocean is ( )f SO, 0dbart S  =  
-1.919 °C with an uncertainty of 2 mK.  Note that Eqn. (3.33.1) is valid for air-free 
water/seawater.  Dissolution of air in water lowers the freezing point slightly; saturation 
with air lowers the freezing temperatures by about 2 mK .   

To estimate the effects of small changes in the pressure or salinity on the freezing 
temperature, it is convenient to consider a power series expansion of (3.33.1).  The result in 
the limit of an infinitesimal pressure change at fixed salinity gives  the pressure coefficient 
of freezing point lowering, as (Clausius-Clapeyron equation, Feistel et al. (2010a)), 

( ) A

AA

Ih
Af

A Ih
A

, .p S p p
p

T S T TS

g S g gt S p
p g S g g

χ
− −∂

= = −
∂ − −

 (3.33.3) 

Its values, evaluated from TEOS-10, vary only weakly with salinity between 
( )10g kg , 0dbarpχ

−  = –0.7429 mK/dbar  for pure water and ( )SO, 0dbarp Sχ  = –0.7483 
mK/dbar  for the standard ocean.  TEOS-10 is consistent with the most accurate 
measurement of pχ  and its experimental uncertainty of 0.0015 mK/dbar  (Feistel and 
Wagner (2005), (2006)). Since the value of pχ  always exceeds that of the adiabatic lapse 
rate Γ , cold seawater may freeze and decompose into ice and brine during adiabatic 
uplift but this can never happen to a sinking parcel.   

In the limit of infinitesimal changes in Absolute Salinity at fixed pressure, we obtain 
the saline coefficient of freezing point lowering, as (Raoult’s law), 

( ) A A

A

Af
A Ih

A A
, .S S

S
T S T Tp

S gt S p
S g S g g

χ∂
= =

∂ − −
 (3.33.4) 

Typical numerical values are ( )10g kg , 0dbarSχ
−  = –59.2 1mK/(g kg )−  for pure water and 

( )SO, 0dbarS Sχ  = –56.9 1mK/(g kg )−  for seawater.   
As a raw practical estimate, Eqn. (3.33.4) can be expanded into powers of salinity, 

using only the leading term of the TEOS-10 saline Gibbs function, S
S A Alng R TS S≈ , which 

stems from Planck’s ideal-solution theory (Planck (1888)).  Here, S SR R M=  = 264.7599  
J kg–1 K–1 is the specific gas constant of sea salt, R  is the universal molar gas constant, and 

SM  = 31.403 82 g mol–1 is the molar mass of sea salt with Reference Composition.  The 
denominator of Eqn. (3.33.4) is proportional to the melting heat SI

pL , Eqn. (3.34.7).  The 
convenient result obtained with these simplifications is  
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( )2 1Sf
0 fSI

A
59 mK/(g kg )

pp

Rt T t
S L

−∂
≈ − + ≈ −

∂
. (3.33.5) 

where we have used f 2 Ct = −   and SI
pL = 330 1J kg−  as approximations that are appropriate 

for the standard ocean.  This simple result is only weakly dependent on these choices and 
is in reasonable agreement with the exact values from Eqn. (3.33.4) and with Millero and 
Leung (1976).  The freezing temperature of seawater is always lower than that of pure 
water.   

When sea-ice is formed, it often contains remnants of seawater included in brine 
pockets.  At equilibrium, the salinity in these pockets depends only on temperature and 
pressure, rather than, for example, on the pocket volume, and can be computed in the 
functional form ( )A ,S t p  as an implicit solution of Eqn. (3.33.1).  Measured values for the 
brine salinity of Antarctic sea ice agree very well with those computed of Eqn. (3.33.1) up 
to the saturation concentration of about 110 1g kg−  at surface pressure (Feistel et al. 
(2010b)).  At high pressures, the validity of the Gibbs function of seawater, and therefore 
of the computed freezing point or brine salinity, too, is limited to only 50 1g kg− .   

We note that in the first approximation, as inferred from Planck’s theory of ideal 
solutions, the above properties depend on the number of dissolved particles regardless of 
the particle sizes, masses or charges.  In other words, they depend mainly on the molar 
rather than on the mass density of the solute, in contrast to properties such as the density 
of seawater and properties derived from it.  The properties considered in the remainder of 
this section (3.33-3.42) which share this attribute are referred to as the colligative 
properties of seawater.   
 
 
3.34 Latent heat of melting  
 
The melting process of ice in pure water can be conducted by supplying heat at constant 
pressure.  If this is done slowly enough that equilibrium is maintained, then the 
temperature will also remain constant.  The heat required per mass of molten ice is the 
latent heat, or enthalpy, of melting, WI

pL .  It is found as the difference between the specific 
enthalpy of water, W,h  and the specific enthalpy of ice, Ih ,h  (Kirchhoff’s law, Curry and 
Webster (1999)): 

( ) ( ) ( )WI W Ih
f f, , .pL p h t p h t p= −  (3.34.1) 

Here, ( )ft p  is the freezing temperature of water, section 3.33.  The enthalpies Wh  and Ihh  
are available from IAPWS-95 (IAPWS (2009b)) and IAPWS-06 (IAPWS (2009a)), 
respectively.   

In the case of seawater, the melt water will additionally mix with the ambient brine, 
thus changing the salinity and the freezing temperature of the seawater.  Consequently, 
the enthalpy related to this phase transition will depend on the particular conditions 
under which the melting occurs.   

Here, we define the latent heat of melting as the enthalpy increase per infinitesimal 
mass of molten ice of a composite system consisting of ice and seawater, when the 
temperature is increased at constant pressure and at constant total masses of water and 
salt, in excess to the heat needed to warm up the seawater and ice phases individually 
(Feistel and Hagen (1998), Feistel et al. (2010b)).  Mass conservation of both water and salt 
during this thermodynamic process is essential to ensure the independence of the latent 
heat formula from the unknown absolute enthalpies of salt and water that otherwise 
would accompany any mass exchange.   

The enthalpy of sea ice, SI ,h  is additive with respect to its constituents ice, Ih ,h  with 
the mass fraction Ih ,w  and seawater, ,h  with the liquid mass fraction ( )Ih1 :w−   
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( ) ( ) ( )SI Ih Ih Ih
A1 , , ,h w h S t p w h t p= − + . (3.34.2) 

Upon warming, the mass of melt water changes the ice fraction Ihw  and the brine salinity 
A.S   The related temperature derivative of Eqn. (3.34.2) is  

( ) ( ) ( )
A

SI Ih Ih
Ih Ih Ih IhA

A, ,

1 1
S p pT pp p p

h h h S h ww w w h h
T T S T T T

∂ ∂ ∂ ∂ ∂ ∂
= − + − + + −

∂ ∂ ∂ ∂ ∂ ∂
. (3.34.3) 

The rate of brine salinity change with temperature is given by the reciprocal of Eqn. 
(3.33.4) and is related to the isobaric melting rate, Ih /

p
w T−∂ ∂ , by the conservation of the 

total salt, ( )Ih
A1 w S−  = const, in the form 

Ih
A A

Ih1p p

S S w
T Tw

∂ ∂
=

∂ ∂−
. (3.34.4) 

Using this relation, Eqn. (3.34.3) takes the simplified form 

( )
SI Ih

Ih Ih Ih SI1 p p p
p p

h ww c w c L
T T

∂ ∂
= − + −

∂ ∂
. (3.34.5) 

The coefficient in front of the melting rate,  

( )SI Ih
A A

A ,

,p
T p

hL S p h S h
S
∂

= − −
∂

, (3.34.6) 

provides the desired expression for isobaric melting enthalpy, namely the difference 
between the partial specific enthalpies of water in seawater and of ice.  As is physically 
required for any measurable thermodynamic quantity, the arbitrary absolute enthalpies of 
ice, water and salt cancel in the formula (3.34.6), provided that the reference state 
conditions for the ice and seawater formulations are chosen consistently (Feistel et al. 
(2008a)).  Note that because of ( )0h g T t η= + +  and Eqn. (3.33.2), the latent heat can also 
be written in terms of entropies η  rather than enthalpies ,h  in the form  

( ) ( )SI Ih
A 0 f A

A ,

,p
T p

L S p T t S
S
ηη η

 ∂ = + × − −
 ∂ 

. (3.34.7) 

Again the result is independent of unknown (and unknowable) constants.   
The latent heat of melting depends only weakly on salinity and on pressure. At the 

surface pressure, the computed value is ( ) ( )SI WI0,0 0p pL L=  = 333 426.5 J kg–1 for pure water, 
and ( )SI

SO,0pL S = 329 928.5 J kg–1 for the standard ocean, with a difference of about 1% due 
to the dissolved salt.  At a pressure of 1000 dbar, these values reduce by 0.6% to 

( ) ( )SI WI0,1000dbar 1000dbarp pL L= = 331 528 J kg–1 and ( )SI
SO,1000dbarpL S = 328 034 J kg–1.  

TEOS-10 is consistent with the most accurate measurements of WI
pL  and their experimental 

uncertainties of 200 J kg–1, or 0.06% (Feistel and Wagner (2005), (2006)). 
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Note that in this section 3.42 of the TEOS-10 Manual (IOC et al. (2010)) below, some  
in situ freezing temperatures of air-free seawater are listed.    

 
 

3.42 Temperature of maximum density  
 
At about 4 °C and atmospheric pressure, pure water has a density maximum below which 
the thermal expansion coefficient and the adiabatic lapse rate change their signs (Röntgen 
(1892), McDougall and Feistel (2003)).  At salinities higher than 23.8 g kg–1 the temperature 
of maximum density MDt  is below the freezing point ft  (Table 3.42.1).  The seasonal and 
spatial interplay between density maximum and freezing point is highly important for the 
stratification stability and the seasonal deep convection for brackish estuaries with 
permanent vertical and lateral salinity gradients such as the Baltic Sea (Feistel et al. 
(2008b), Leppäranta and Myrberg (2009), Reissmann et al. (2009)).   

The temperature of maximum density MDt  is computed from the condition of 
vanishing thermal expansion coefficient, that is, from the solution of the implicit equation 
for MD A( , )t S p ,  

( )A MD, , 0.TPg S t p =  (3.42.1) 
The temperature of maximum density is available in the GSW Oceanographic Toolbox as 
function gsw_t_maxdensity_exact.  Selected TEOS-10 values computed from Eqn. (3.42.1) 
are given in Table 3.42.1.  
 
Table 3.42.1: Freezing temperature ft  and temperature of maximum density MDt   

for air-free brackish seawater with absolute salinities AS  between 0 
and 125 g kg− , computed at the surface pressure from TEOS-10.  
Values of MDt  in parentheses are less than the freezing temperature.  

 
AS  

g kg–1 
ft  

°C 
MDt  
°C 

AS  
g kg–1 

ft  
°C 

MDt  
°C 

AS  
g kg–1 

ft  
°C 

MDt  
°C 

0 +0.003 3.978 8.5 –0.456 2.128 17 –0.912   0.250 
0.5 –0.026 3.868 9 –0.483 2.019 17.5 –0.939   0.139 
1 –0.054 3.758 9.5 –0.509 1.909 18 –0.966   0.027 
1.5 –0.081 3.649 10 –0.536 1.800 18.5 –0.994 –0.085 
2 –0.108 3.541 10.5 –0.563 1.690 19 –1.021 –0.196 
2.5 –0.135 3.432 11 –0.590 1.580 19.5 –1.048 –0.308 
3 –0.162 3.324 11.5 –0.616 1.470 20 –1.075 –0.420 
3.5 –0.189 3.215 12 –0.643 1.360 20.5 –1.102 –0.532 
4 –0.216 3.107 12.5 –0.670 1.249 21 –1.130 –0.644 
4.5 –0.243 2.999 13 –0.697 1.139 21.5 –1.157 –0.756 
5 –0.269 2.890 13.5 –0.724 1.028 22 –1.184 –0.868 
5.5 –0.296 2.782 14 –0.750 0.917 22.5 –1.212 –0.980 
6 –0.323 2.673 14.5 –0.777 0.807 23 –1.239 –1.092 
6.5 –0.349 2.564 15 –0.804 0.696 23.5 –1.267 –1.204 
7 –0.376 2.456 15.5 –0.831 0.584 24 –1.294 (–1.316) 
7.5 –0.403 2.347 16 –0.858 0.473 24.5 –1.322 (–1.428) 
8 –0.429 2.238 16.5 –0.885 0.362 25 –1.349 (–1.540) 
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