Origin
The founding of the PROSOPE (PROductivity
of Oceanic Pelagic System) group in 1997 was based upon a
number of observations related to the initial aims and the
results of the JGOFS program. To fit with the final objective
of modeling the carbon cycle at a global scale, the JGOFS
program selected a limited number of variables and processes
which had to be documented (core parameters) in certain
"representative" biogeochemical provinces. This
compromise strategy, although best adapted in a global
context, was necessarily simplifying: some variables,
processes or critical scale may therefore have been
neglected, not being initially quoted as essential. Recent
studies, even including some which were conducted under
JGOFS, have indeed demonstrated that if the "core
parameter strategy" is necessary, it is not sufficient
in many cases.
As part of the PROOF (former JGOFS-France)
program, the main objective of the PROSOPE group, a
multidisciplinary community of more than 40 scientists (see list
of participants), is to
focus a large part of its activity on specific and detailed
studies related to the carbon cycle which were not taken into
consideration by the former global strategy of JGOFS. The
group has a variety of competencies which range from
molecular approaches of phytoplankton taxonomy to
biogeochemical applications of ocean color remote sensing.
Many of the members of the group were involved in the
previous operations of the JGOFS-France program and, in
particular, those devoted to the study of oligotrophic
systems (North Atlantic and South Pacific Gyres in the
context of EUMELI and OLIPAC programs, respectively). To
reach its objective, the group activity is organized over
three interactive levels.
Objectives
Level 1 : The exploitation of databases.
The analysis of existing databases is carried out
in two main directions. Firstly, to infer generic
parameterizations which are required for modelisation at a
global scale. Secondly, to identify specific processes,
variables or scales which would require increasing attention
within carbon cycle studies. An example of this
two-directional exploitation of databases is given by the
analysis of the relationship between the particle scattering
coefficient and chlorophyll a concentration. At a global
scale, a non-linear relationship can be established between
both variables (analysis of more than 2500 data, Loisel and
Morel 1998, Limnol. Oceanogr., 43, 847-858). This
relationship, however, presents a significant
"biological noise". Part of this noise can be
attributed to variations in the particle scattering
coefficient at a daily scale (e.g. Claustre et al.,
1999, JGR, 104, 3401-3422), a scale which is generally
neglected (for both conceptual and methodological reasons) in
biogeochemical studies.
Level 2
: The development of new methodology. Three main areas of research have been identified.
(1) The development of methods allowing a better
understanding of biogenic elemental fluxes. This includes new
techniques applied to the simultaneous determination of DOC,
NOD and POD as well as isotopic techniques for the estimation
of phosphorus fluxes in dissolved and particulate phases. (2)
The use and the validation of new types of optical profilers
for the quantification of biogeochemically-relevant optical
quantities in a quasi-continuous mode. This allows small
scale biogeochemical studies to be carried out. (3) The use
of methods in molecular biology for the study of
phytoplankton diversity. In particular, members of the group
have contributed to the identification a new phytoplankton
class, the bolidophyceae (Guillou et al., 1999, J.
Phycol., 35, 368-381) and have compared various
approaches (taxonomic pigments vs molecular probes) in
quantifying the in situ specific phytoplankton biomass
(Moon-van der Staay et al., 2000, Limnol. Oceanogr.,
45, 99-109).
Level 3. Sea-going
activities. The in
situ observation conducted by the scientists typically
fit with the objective defined by JGOFS/SCOR in 1990: "in
various representative ocean regimes", process
studies have to be conducted "to assess the rates of,
and controls on, vertically distributed primary production
and the degree to which they can be determined using
remotely-sensed near-surface pigment data". At the
same time, the proposed studies have the ambition to take
advantage of research conducted at levels 1 and 2. Therefore,
the first cruise of the group in autumn 1999 had four main
objectives (see also overall description of the
PROSOPE cruise):
|
To carry out classical process
studies, typical of JGOFS |
 |
To focus on the small scale
biogeochemical processes, particularly at a daily
scale. |
 |
To study the influence of
nitrogen, phosphorus and iron on oceanic fertility. |
 |
To conduct calibration/validation
operations for the SeaWiFS color sensor |
|
NOM (lieu
d'origine)
|
STATUT
|
SPECIALITE
|
Temps (%)
|
Antoine D. (Villefranche) |
CR CNRS |
optique marine et atmosphérique |
10
|
Babin M. (Villefranche) |
CR CNRS |
photosynthèse marine, optique |
20
|
Belviso S. (Gif/Yvette) |
CR CNRS |
produits soufrés |
10
|
Begovic M. (Villefranche) |
Thésitif |
pC02 en Méditerranée |
30
|
Bianchi M. (Marseille) |
DR CNRS |
microbiologie/réseau microbien |
25
|
Blanchot J. (Roscoff) |
CR IRD |
cytométrie, fixation N2 |
30
|
Bricaud A. (Villefranche) |
DR CNRS |
optique, biooptique |
10
|
Bruyant F. (Villefranche) |
Thésitif |
photosynthèse marine, fluorescence
variable |
30
|
Carlotti F. (Arcachon) |
CR CNRS |
mesozooplancton, OPC |
10
|
Claustre H. (Villefranche) |
CR CNRS |
biogéochimie, pigments, biooptique |
40
|
Conan P. (Marseille) |
MC, Marseille |
production primaire |
15
|
Copin C. (Villefranche) |
CR CNRS |
gaz dissous, alcalinité, pH |
10
|
Dolan J. (Villefranche) |
CR CNRS |
biomasse et rôle des ciliés |
10
|
Garczarek L. (Roscoff) |
Thésitif |
Biologie moléculaire |
30
|
Guieu C. (Paris) |
CR CNRS |
éléments métalliques
traces/aérosols |
20
|
Guillou L. (Roscoff) |
Post-doc |
taxonomie moléculaire |
30
|
Goutx M. (Marseille) |
CR CNRS |
marqueurs organiques |
10
|
Gorsky G. (Villefranche) |
CR CNRS |
particules en suspension,
macroplancton |
10
|
Jacquet S. (Roscoff) |
Thésitif |
cytométrie, cycles |
50
|
Lanoiselé J. (Paris) |
ITA, CNRS |
flux air-mer de CO2
- bouée CARIOCA |
20
|
Lantoine F. (Banyuls) |
MC, Paris VI |
phycobilines, influence du fer |
20
|
Leblanc K. 5marseille) |
Thésitif |
Cycle silice Méditerranée |
50
|
Leblond N. (Villefranche) |
ITA, CNRS |
Gestion des trappes |
10
|
Lefèvre D. (Marseille) |
CR CNRS |
Production communautaire |
15
|
Marie D. (Roscoff) |
ITA, CNRS |
cytométrie |
30
|
Malara.G. (Villefranche) |
ITA, CNRS |
automatisation HIAC |
50
|
Marty J.C. (Villefranche) |
DR CNRS |
Biogéochimie, marqueurs organiques |
10
|
Merlivat L. (Paris) |
DR CNRS |
flux air-mer de CO2
- bouée CARIOCA |
5
|
Migon C. (Villefranche) |
MC, Corte |
éléments métalliques
traces/aérosols |
15
|
Momzikoff A. (Paris) |
CR CNRS |
matière organique dissoute totale
et colorée |
20
|
Morel A. (Villefranche) |
Pr, Paris VI |
optique marine et atmosphérique |
10
|
Moutin T. (Marseille) |
MC |
cycle du phosphore |
30
|
Nicolas E. (Villefranche) |
IR, CNRS |
éléments métalliques traces |
10
|
Oubelkheir K. (Villefranche) |
thésitif |
capteurs optiques et biogéochimie |
20
|
Panagiopoulos (Marseille) |
thésitif |
MOD, bactéries |
40
|
Partensky F. (Roscoff) |
CR CNRS |
cytométrie, biologie moléculaire |
30
|
Picheral M. (Villefranche) |
ITA, CNRS |
Profileur Vidéo Marin |
20
|
Quéguiner B. (Brest) |
PR, Marseille |
silice et phytoplancton |
10
|
Raimbault P. (Marseille) |
DR CNRS |
sels nutritifs |
10
|
Ras Joséphine(Villefranche) |
CDD |
Traitement données, pigments |
50
|
Ridame, C. (Villefranche) |
Thésitif |
cycle du phosphore, aérosols
sahariens |
50
|
Sciandra A. (Villefranche) |
CR CNRS |
concentration et spectre de taille
des particules |
30
|
Sempéré R. (Marseille) |
CR CNRS |
matière organique dissoute |
20
|
Simon N. (Roscoff) |
MC, Paris VI |
biologie moléculaire, picoplancton |
30
|
Taillez D. (Villefranche) |
ITA CNRS |
acquisition CTD + traitement |
30
|
Van Wanbecke F. (Marseille) |
CR CNRS |
relations bactéries-phytoplancton |
20
|
Vaulot D. (Roscoff) |
DR CNRS |
picoplancton, biologie moléculaire |
30
|
|
Data base exploitation
Bricaud A., Morel A., Babin M., Allali K.
and H. Claustre, 1998. Variations of light absorption by
suspended particles with the chlorophyll a concentration in
oceanic (Case 1) waters : analysis and implications for
bio-optical models. Journal of Geophysical Research, 103,
31,033-31,034.
Loisel H. and A. Morel, 1998. Light
scattering and chlorophyll concentration in case I waters : a
re-examination. Limnology and Oceanography, 43,
847-858.
Partensky F, Blanchot J. and D. Vaulot,
1998. Differential distribution of Prochlorococcus and
Synechococcus in oceanic waters: a review. In: Charpy
L, Larkum H. (eds). (eds). Marine cyanobacteria and related
organisms. Bull. Inst. Océanogr., Monaco, Numéro
spécial 19, 431-449.
Partensky F, Hess W.R. and D. Vaulot, 1998.
Prochlorococcus, a marine photosynthetic prokaryote of
global significance. Microbiology and Molecular Biology
Reviews, 63, 106-127.
Small scale studies (including
diurnal cycles)
Claustre H., Morel A., Babin M., Cailliau
C., Marie D., Marty J.-C., Taillez D. and D. Vaulot, 1999.
Variability in particle attenuation and chlorophyll
fluorescence in the tropical Pacific : scales, patterns and
some biogeochemical implications. Journal of Geophysical
Research, 104, 3401-3422.
Claustre, H., Fell, F., Oubelkheir, K.,
Prieur, L., B. Gentilli, Sciandra, A. and M. Babin (2000).
Continuous monitoring of surface optical properties across a
geostrophic front: biogeochemical inferences. Limnology
and Oceanography, 45, in press.
Jacquet S., Lennon, J.-F., Marie D., and D.
Vaulot, 1998. Picoplankton population dynamics in coastal
waters of the NW Mediterranean Sea. Limnology and
Oceanography, 43, 1916-1931.
Liu H.B., Landry M., Campbell L. and D.
Vaulot, 1998. Prochlorococcus growth rates in the
central equatorial Pacific: an application of the fmax
approach. Journal of Geophysical Research, 104,
3391-3399.
Vaulot D. and D. Marie, 1998. Diel
variability of photosynthetic picoplankton equatorial
Pacific. Journal of Geophysical Research, 104,
3297-3310.
Phosphorus
cycle
Migon C., Sandroni V., and G.
Copin-Montégut, 1998, Phosphates in rainwaters : total
fluxes and partitioning between labile and refractory phases.
Annales Geophysicae, 16, 2, C 733.
Migon C. and Sandroni, V. 1998. Phosphorus
in rainwaters : partitioning, inputs and impact on the marine
upper layer. Limnology and Oceanography, 44,
1160-1165.
Methods
Brusaard C.P.D., Marie D., and G. Bratbak,
2000. Flow cytometric detection of viruses. Journal of
Virological Methods, in press.
Brussaard C.P.D., Thyrhaug R., Marie D.,
and G. Bratbak, 1999. Flow cytometric analyses of virus
infection in two marine phytoplankton species, Micromonas
pusilla (Prasinophyceae) and Phaeocystis pouchetii
(Prymnesiophyceae). Journal of Phycology 35,
941-948.
Jacquet S., Lennon J.-F. and D. Vaulot,
1997. Application of a compact automatic sea water to high
frequency picoplankton studies. Aquatic Microbial Ecology,
14, 309-314.
Marie D., Brussaard C.P.D., Thyrhaug
R., Bratbak G. and D. Vaulot, 1998. Enumeration of viruses in
marine samples by flow cytometry. Applied and
Environmental Microbiology, 65, 45-52.
Marie D., Partensky. F., Simon N., Guillou
L. and D. Vaulot, 2000. Flow cytometry analysis of marine
picoplankton. In: Diamond R.A., DeMaggio S. (ed.). In Living
Colors: Protocols in Cytometry and Cell sorting. R.G. Landes
Company., in press.
Molecular tools for the
characterization of new groups
Guillou L., Chrétiennot-Dinet M-J, Medlin
L.K., Claustre H., Loiseaux-de Goër S., and D. Vaulot, 1999.
Bolidomonas: a new genus with two species belonging to
a new algal class, the Bolidophyceae class. nov.
(Heterokonta). Journal of Phycology, 35,
368-381.
Guillou, L., Moon-Van der Staay, S. Y,
Claustre, H., Partensky, F. and D. Vaulot, 1999. Diversity
and abundance of Bolidophyceae (Heterokonta) in oceanic
waters. Applied and Environmental Microbiology, 65,
4528-4536.
Hess W.R., Steglich C., Lichtlé C.
and F. Partensky, 1999. The phycoerythrins of Prochlorococcus
marinus are associated to the thylakoid membranes and are
encoded by a single large gene cluster. Plant Molecular
Biology, 40, 507-521
Moon-van der Staay S.Y., van der Staay
G.W.M, Guillou L, Claustre H, and D. Vaulot, 2000. Abundance
and diversity of Prymnesiophyceae in picoplankton communities
from the equatorial Pacific Ocean inferred from 18S rDNA
sequences. Limnology and Oceanography, 45,
98-109.
Van der Staay G.W.M., and F. Partensky,
1999. The 21 kDa protein associated with Photosystem I in Prochlorococcus
marinus is the PsaF protein (AJ131438). Plant
Physiology 120, 339. (Plant Gene Register #
PGR99-067).
|