PROSOPE  

H. CLAUSTRE : head of mission  and project leader

Phosphate (SRP)
MAGIC procedure :
T. Moutin


 24 mars 2003  Methodology   |   Data set

Orthophosphate analysis (modified MAGIC procedure)

Thierry MOUTIN

Soluble Reactive Phosphate (SRP) were analysed on board according to Murphy & Riley (1962) after a x6 concentration following the MAGnesium Induced Coprecipitation procedure (Karl et al. 1992). All chemicals were of reagent grade quality and solutions were prepared using deionized Milli-Q water. Sample bottles were washed before use with 10% HCl. To avoid contamination, only one bottle (polycarbonate, 60 ml) was used for sampling, centrifugation, precipitate treatment and analysis. Spectrophotometric analysis was performed with a CECIL CE 1011 spectrophotometer using a special cell with long optical length (100 mm) and small volume (10 ml).

First results indicate surface (10-15 m) SRP concentration of 12.3 nM (SD=4.7, N=50). This is above the blank value determined using natrium hydroxyde and hydrochloric acid as for the samples treatment (bk=3.9 nM, SD=1.8) but is not consistent with orthophosphate concentration obtained from turnover times as proposed by Thingstad et al. (1999). Turnover time (T=[o-P]/V, [o-P] is the natural orthophosphate concentration and V the total uptake of orthophosphate) was obtained from 33P experiment (Thingstad et al., 1993). The total required uptake may be indirectly obtained from bacterial production taking a C:P ratio of 50 and primary production taking a C:P ratio of 106. With considering V=VBr+VPr and the turnovertime, it is possible to determine o-P. Following this procedure, surface (10-15 m) phosphate concentration varied from 3 near the strait of Gibraltar to 0.2 nM in the ionian sea. The difference of about 10 nM observed between this calculation and the MAGIC method may be explained either by DOP hydrolysis during the acid treatment or by the fact that the real blank value for seawater could not be obtained. Whatever the explanation, it seems reasonable to consider as a reference the value obtained at surface from the turnovertime. This latter value is then taken as the " blank " for the determination of o-P concentration with the MAGIC procedure.

This intricate procedure seems to be the only one which can provide a reasonable picture of the distribution of o-P concentration in surface waters of the Mediterranean Sea. A new detection limit of 5 nM seems to be reasonable. This concentration deapen from the strait of Gibraltar (about 10 m) to the M IO sīte in the ionian sea (about 90 m).

 


DATA  SET

 

Phosphate PROSOPE

Modified MAGIC procedure

CTD

bouteille

profondeur en m

[PO4] nM

9

20

11

9

18

16

486

9

16

21

420

9

14

26

429

9

12

31

415

9

10

42

561

9

8

52

9

6

61

702

9

4

76

797

9

2

92

745

CTD

bouteille

profondeur en m

[PO4] nM

11

20

5

0

11

18

11

3

11

16

20

11

14

29

10

11

12

38

14

11

10

49

25

11

8

59

57

11

6

80

207

11

4

100

290

11

1

150

356

CTD

bouteille

profondeur en m

[PO4] nM

14

20

5

14

18

15

2

14

16

29

15

14

14

40

39

14

12

45

66

14

10

60

225

14

8

69

250

14

6

90

176

14

4

110

210

14

1

150

303

CTD

bouteille

profondeur en m

[PO4] nM

17

20

5

0

17

18

10

1

17

16

25

6

17

14

40

42

17

12

55

156

17

10

70

185

17

8

80

79

17

6

94

28

17

4

109

37

17

1

151

138

CTD

bouteille

profondeur en m

[PO4] nM

20

20

7

0

20

18

13

0

20

16

27

0

20

14

41

4

20

12

61

21

20

10

77

52

20

8

90

115

20

6

105

148

20

4

122

133

20

1

150

164

CTD

bouteille

profondeur en m

[PO4] nM

23

20

6

0

23

18

11

0

23

16

23

0

23

14

40

0

23

12

55

11

23

10

65

20

23

8

80

58

23

6

95

59

23

4

120

122

23

1

150

127

CTD

bouteille

profondeur en m

[PO4] nM

26

20

6

0

26

18

10

0

26

16

29

26

14

50

1

26

12

70

0

26

10

85

0

26

8

98

6

26

6

115

8

26

4

140

39

26

1

170

62

CTD

bouteille

profondeur en m

[PO4] nM

33

20

4

0

33

18

14

0

33

16

30

0

33

13

50

2

33

10

70

3

33

8

90

5

33

6

100

9

33

4

131

14

33

2

150

25

33

1

200

83

CTD

bouteille

profondeur en m

[PO4] nM

44

20

7

0

44

18

17

0

44

16

32

1

44

14

50

44

12

70

3

44

10

90

4

44

8

109

6

44

6

130

14

44

4

150

30

44

2

200

93

CTD

bouteille

profondeur en m

[PO4] nM

60

20

7

0

60

18

17

0

60

16

32

0

60

14

50

0

60

12

75

0

60

10

90

0

60

8

110

2

60

6

130

21

60

4

150

27

60

2

200

97

CTD

bouteille

profondeur en m

[PO4] nM

63

20

4

0

63

18

14

0

63

16

30

0

63

14

50

0

63

12

70

0

63

10

90

0

63

8

110

17

63

6

130

33

63

4

150

46

63

2

200

77

CTD

bouteille

profondeur en m

[PO4] nM

68

20

5

4

68

18

15

0

68

16

30

0

68

14

50

0

68

12

71

10

68

10

90

12

68

8

110

44

68

6

130

103

68

4

150

133

68

2

200

180

CTD

bouteille

profondeur en m

[PO4] nM

70

20

5

0

70

18

15

0

70

16

30

0

70

14

50

4

70

12

64

2

70

10

75

15

70

8

90

46

70

6

110

103

70

4

129

142

70

2

150

173

CTD

bouteille

profondeur en m

[PO4] nM

73

20

4

0

73

18

15

0

73

16

25

6

73

14

40

8

73

12

45

3

73

10

60

96

73

8

75

225

73

6

90

251

73

4

110

250

73

2

151

298

CTD

bouteille

profondeur en m

[PO4] nM

78

20

4

4

78

18

9

0

78

12

29

5

78

10

39

78

8

47

14

78

6

60

19

78

4

70

150

78

3

90

248

78

2

110

250

78

1

150

313

CTD

bouteille

profondeur en m

[PO4] nM

96

20

13

0

96

17

32

0

96

15

40

0

96

10

45

4

96

8

55

40

96

7

60

39

96

6

65

105

96

5

70

177

96

4

74

224

96

3

90

258

96

2

110

282

96

1

150

293

CTD

bouteille

profondeur en m

[PO4] nM

104

20

15

0

104

17

30

0

104

15

40

104

14

45

104

12

55

0

104

11

60

21

104

10

65

31

104

9

70

84

104

8

75

94

104

7

80

132

104

5

90

234

104

4

100

256

104

3

110

287

104

2

130

309

104

1

150

315