PROSOPE |
H. CLAUSTRE : head of mission and project leader |
Phosphate
(SRP) |
24 mars 2003 | Methodology | Data set |
Orthophosphate analysis (modified MAGIC procedure)
Soluble Reactive Phosphate (SRP) were analysed on board according to Murphy & Riley (1962) after a x6 concentration following the MAGnesium Induced Coprecipitation procedure (Karl et al. 1992). All chemicals were of reagent grade quality and solutions were prepared using deionized Milli-Q water. Sample bottles were washed before use with 10% HCl. To avoid contamination, only one bottle (polycarbonate, 60 ml) was used for sampling, centrifugation, precipitate treatment and analysis. Spectrophotometric analysis was performed with a CECIL CE 1011 spectrophotometer using a special cell with long optical length (100 mm) and small volume (10 ml).
First results indicate surface (10-15 m) SRP concentration of 12.3 nM (SD=4.7, N=50). This is above the blank value determined using natrium hydroxyde and hydrochloric acid as for the samples treatment (bk=3.9 nM, SD=1.8) but is not consistent with orthophosphate concentration obtained from turnover times as proposed by Thingstad et al. (1999). Turnover time (T=[o-P]/V, [o-P] is the natural orthophosphate concentration and V the total uptake of orthophosphate) was obtained from 33P experiment (Thingstad et al., 1993). The total required uptake may be indirectly obtained from bacterial production taking a C:P ratio of 50 and primary production taking a C:P ratio of 106. With considering V=VBr+VPr and the turnovertime, it is possible to determine o-P. Following this procedure, surface (10-15 m) phosphate concentration varied from 3 near the strait of Gibraltar to 0.2 nM in the ionian sea. The difference of about 10 nM observed between this calculation and the MAGIC method may be explained either by DOP hydrolysis during the acid treatment or by the fact that the real blank value for seawater could not be obtained. Whatever the explanation, it seems reasonable to consider as a reference the value obtained at surface from the turnovertime. This latter value is then taken as the " blank " for the determination of o-P concentration with the MAGIC procedure.
This intricate procedure seems to be the only one which can provide a reasonable picture of the distribution of o-P concentration in surface waters of the Mediterranean Sea. A new detection limit of 5 nM seems to be reasonable. This concentration deapen from the strait of Gibraltar (about 10 m) to the M IO sīte in the ionian sea (about 90 m).
Phosphate PROSOPE
Modified MAGIC procedure
CTD
bouteille
profondeur en m
[PO4] nM
9
20
11
9
18
16
486
9
16
21
420
9
14
26
429
9
12
31
415
9
10
42
561
9
8
52
9
6
61
702
9
4
76
797
9
2
92
745
CTD
bouteille
profondeur en m
[PO4] nM
11
20
5
0
11
18
11
3
11
16
20
11
14
29
10
11
12
38
14
11
10
49
25
11
8
59
57
11
6
80
207
11
4
100
290
11
1
150
356
CTD
bouteille
profondeur en m
[PO4] nM
14
20
5
14
18
15
2
14
16
29
15
14
14
40
39
14
12
45
66
14
10
60
225
14
8
69
250
14
6
90
176
14
4
110
210
14
1
150
303
CTD
bouteille
profondeur en m
[PO4] nM
17
20
5
0
17
18
10
1
17
16
25
6
17
14
40
42
17
12
55
156
17
10
70
185
17
8
80
79
17
6
94
28
17
4
109
37
17
1
151
138
CTD
bouteille
profondeur en m
[PO4] nM
20
20
7
0
20
18
13
0
20
16
27
0
20
14
41
4
20
12
61
21
20
10
77
52
20
8
90
115
20
6
105
148
20
4
122
133
20
1
150
164
CTD
bouteille
profondeur en m
[PO4] nM
23
20
6
0
23
18
11
0
23
16
23
0
23
14
40
0
23
12
55
11
23
10
65
20
23
8
80
58
23
6
95
59
23
4
120
122
23
1
150
127
CTD
bouteille
profondeur en m
[PO4] nM
26
20
6
0
26
18
10
0
26
16
29
26
14
50
1
26
12
70
0
26
10
85
0
26
8
98
6
26
6
115
8
26
4
140
39
26
1
170
62
CTD
bouteille
profondeur en m
[PO4] nM
33
20
4
0
33
18
14
0
33
16
30
0
33
13
50
2
33
10
70
3
33
8
90
5
33
6
100
9
33
4
131
14
33
2
150
25
33
1
200
83
CTD
bouteille
profondeur en m
[PO4] nM
44
20
7
0
44
18
17
0
44
16
32
1
44
14
50
44
12
70
3
44
10
90
4
44
8
109
6
44
6
130
14
44
4
150
30
44
2
200
93
CTD
bouteille
profondeur en m
[PO4] nM
60
20
7
0
60
18
17
0
60
16
32
0
60
14
50
0
60
12
75
0
60
10
90
0
60
8
110
2
60
6
130
21
60
4
150
27
60
2
200
97
CTD
bouteille
profondeur en m
[PO4] nM
63
20
4
0
63
18
14
0
63
16
30
0
63
14
50
0
63
12
70
0
63
10
90
0
63
8
110
17
63
6
130
33
63
4
150
46
63
2
200
77
CTD
bouteille
profondeur en m
[PO4] nM
68
20
5
4
68
18
15
0
68
16
30
0
68
14
50
0
68
12
71
10
68
10
90
12
68
8
110
44
68
6
130
103
68
4
150
133
68
2
200
180
CTD
bouteille
profondeur en m
[PO4] nM
70
20
5
0
70
18
15
0
70
16
30
0
70
14
50
4
70
12
64
2
70
10
75
15
70
8
90
46
70
6
110
103
70
4
129
142
70
2
150
173
CTD
bouteille
profondeur en m
[PO4] nM
73
20
4
0
73
18
15
0
73
16
25
6
73
14
40
8
73
12
45
3
73
10
60
96
73
8
75
225
73
6
90
251
73
4
110
250
73
2
151
298
CTD
bouteille
profondeur en m
[PO4] nM
78
20
4
4
78
18
9
0
78
12
29
5
78
10
39
78
8
47
14
78
6
60
19
78
4
70
150
78
3
90
248
78
2
110
250
78
1
150
313
CTD
bouteille
profondeur en m
[PO4] nM
96
20
13
0
96
17
32
0
96
15
40
0
96
10
45
4
96
8
55
40
96
7
60
39
96
6
65
105
96
5
70
177
96
4
74
224
96
3
90
258
96
2
110
282
96
1
150
293
CTD
bouteille
profondeur en m
[PO4] nM
104
20
15
0
104
17
30
0
104
15
40
104
14
45
104
12
55
0
104
11
60
21
104
10
65
31
104
9
70
84
104
8
75
94
104
7
80
132
104
5
90
234
104
4
100
256
104
3
110
287
104
2
130
309
104
1
150
315