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Cecilia’s Research Areas

eHuman mobility
oAir travel
oCar sharing
oTraffic congestion study
oLand use and transport integration

oUrban planning and development




Research Capacities

e Spatial and temporal analysis and modelling
e Survey research and design in psychology
e Machine learning and pattern recognition




Machine learning methods for
rooftop segmentation

* The aim of this study is to develop methods to systematically evaluate the
evolution of sustainable urban sprawl in the Perth and peel regions from
2010 to 2020 using deep neural networks.




Al, Machine Learning and Deep Learning
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Zhang, Wei (1988). "Shift-invariant pattern recognition neural network and its
optical architecture". Proceedings of annual conference of the Japan
Society of Applied Physics.

S Lawrence et al., “Face recognition: A convolutional neural-network
approach”,IEEE Trans. on Neural networks, Jan 1997.



https://drive.google.com/file/d/0B65v6Wo67Tk5Zm03Tm1kaEdIYkE/view?usp=sharing

<Accuracy> is around
94% by area

Proof of concept
Scope for
Improvement in
edge segmentation

Segmented aerial view of a portion
of W Joondalup

Section of Joondalup




Determination of High Water Mark (HWM) and

its Location Along a Coastline
Dr Xin Liu

To develop a model integrating both land and water
information to determine the position of ‘high’ water

mark for both costal property management and coastal
hazard planning purposes.
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Results

Fit cumulative distribution for swash prob at South Frematle from 1999 to 2009

Spatial continuity of swash probability s
(Spatial analysis and Geostatistics)

Green line indicates the
position of HWM in an
extreme situation,
which is for the coastal
hazard planning
purpose.
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Semivariogram model

Legend
Cross section points on swash probability —— High water line 0.387(m)
Mean Higher High Water 0
HWM used in Landgate

Suggested HWM Postion

—— HWM used in Department of Transport 0.
——— Dune toeline 2.11(m)

Vegetation line 2.67(m)




Thoughts on Our Collaboration Opportunities

o Data-driven Prediction of Urban Flooding and its Impact
on Property Values: A Digital Twins Approach
o Predicting coastal flooding due to Climate changes




Thanks very much

Questions?




