I. INTRODUCTION

Temporal variations in the taxonomic and size structure of algal communities play a key role in understanding many marine biogeochemical processes. Thanks to the advances in the remote sensing field, the analysis of space-derived or in situ optical properties (ODPs and ADPs) is today largely dedicated to identify different phytoplankton types and analyze synoptically the changes in the algal communities, so that biochemical models can possibly be refined (Nair et al., 2008).

In the framework of the BIDOCAREX (BIOptics and CALBOun Experiment) and BOUSSOLE (BOUQuête pour l’acquisition d’une Série Optique à Long terme) projects, we elaborated a new algorithm based on the multivariate Partial Least Square (PLS) technique in order to retrieve information on phytoplankton pigments and size structure from a long-time series of hyperspectral phytoplankton absorption measurements monthly collected at the BOUSSOLE site (Ligurian Sea, Mediterranean Sea) since 2003.

II. BIO-OPTICAL ANALYSES

HPLC pigment and light absorption measurements used to develop calibration model were collected during 4 oceanic cruises in the Mediterranean Sea between 1996 and 2004 (Fig.1). At the BOUSSOLE mooring site (7°34’E, 43°22’N, Mediterranean Sea; Fig.1) samples were monthly collected between 2003 and 2011. Phytoplankton absorption spectra (a(λ)/a(λ)) were measured every 1 cm in the range 400-700 nm. HPLC pigment measurements were performed according to Vlividas et al. (1996). All data considered here, belong to the first optical depth (Zo/4.6) of Case 1 waters.

III. PARTIAL LEAST SQUARE (PLS) REGRESSION: CALIBRATION AND VALIDATION

PLS is a multivariate analysis technique that relates a data matrix of predictor variables to a data matrix of response variables by regression. Thus, the PLS method can be used for the prediction of one or several dependent variables from several independent variables (Martens and Naes, 1989). In this study:

PREDICTOR VARIABLES: Fourth-derivative of phytoplankton absorption spectra (Fig.2).

RESPONSE VARIABLES: Biomarker pigments (DP) of the three phytoplankton size classes (Urz et al., 2006) and Tchl a (see Table 1 for details).

Variable	Pigments	Parameters	Formula
Tchl a	Chlorophyll a, Prochlorophyceae, and Chrysophyceae	a(450)/a(650)	1000(M + 1)/[1000(M + 1) + 1]
Micro	Fucoxanthine and Pheophytin	DP of phytoplankton absorption	2.17x(λ) + 0.0185
Nano	19’th-18’th and Absorbsin	EPs of phytoplankton absorption	0.18x(λ) + 0.0185
Pico	Unknown Phytoplankton and Photosynthetic Pigments	Total DP (µg/100mL)	Tchl a/µg/100mL

Table 2. PLS parameters of a(450)/a(650), from left to right: number of components (k), Root Mean Square Error of Prediction (RMSEP) in mg m−3, the explained variance (R%) for independent (R2%) and dependent (R2Y%) variables.

<table>
<thead>
<tr>
<th>a(450)/a(650)</th>
<th>RMSEP</th>
<th>R2%</th>
<th>R2Y%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tchl a</td>
<td>3.1066</td>
<td>93.63</td>
<td>98.56</td>
</tr>
<tr>
<td>DP</td>
<td>0.0007</td>
<td>96.18</td>
<td>97.22</td>
</tr>
<tr>
<td>Micro</td>
<td>0.1055</td>
<td>96.31</td>
<td>98.56</td>
</tr>
<tr>
<td>Nano</td>
<td>0.0362</td>
<td>96.24</td>
<td>98.56</td>
</tr>
<tr>
<td>Pico</td>
<td>0.0707</td>
<td>97.29</td>
<td>98.56</td>
</tr>
</tbody>
</table>

VALIDATION: At the BOUSSOLE site the most accurate PLS predictions (n=484) are obtained for Tchl a and DP (R2=0.91, Fig. 4a, b). More importantly, PLS models evidenced their ability in predicting the concentrations of DPs associated to micro-, nano-, and pico-phytoplankton size classes (Fig.4c, d, e) as observed from high R2 values (0.52-0.75) and regression slopes (>0.90).

IV. PLS PREDICTED TEMPORAL CHANGES

The a(450)/a(650)-PLS model predicted concentrations of Tchl a, DP Micro, Nano and Pico reproduced well those obtained from HPLC pigment measurements over the entire BOUSSOLE time series (Fig.5).

V. CONCLUSIONS

The PLS technique represents an encouraging method for retrieving algal biomass and size structure from in situ absorption properties. Future work will be focused on the application of the PLS method to space-derived optical properties, so that the continuous monitoring of the algal community structure can become possible.

References

Acknowledgements

This work is part of the BOUSSOLE project, which was funded by the Agence Nationale de Recherche (ANR) and by the BOUSSOLE project. Multivariate algorithms developed the BOUSKO project and provided technological and logistic support: European Space Agency (ESA), Centre National d’Etudes Spatiales (CNES), Laboratoire de Recherche Scientifique (CNRS), National Academy of Sciences Japan, Earth Observation and Remote Sensing Department (NASA), and Centre National de Recherche et de Développement (CNRS). The constructive comments of two anonymous reviewers have resulted in a strong improvement of the first draft of the manuscript. Their help is deeply acknowledged. I would like to thank the field and laboratory crews of the research vessel Cesar, all the scientists, andFinally, the authors would like to thank the reviewers for their valuable comments and suggestions. This work was supported by the ANR project BOUSSOLE (ANR-08-EMER-013) and the CNRS project BIDOCAREX (BIOptics and CALBOun Experiment).

Figure 1: Example of a phytoplankton absorption spectrum (a) and its fourth-derivative (b). The fourth-derivative method computed the changes in curvature of a given spectrum over a pre-fixed sampling interval (Δλ/Δn). The fourth-derivative absorption spectrum is composed of 269 spectral values.

Figure 2. Variation of the Root Mean Square Error of Prediction (RMSEP, see example in Fig.3). Two and three components were sufficient for Tchl a and DP variables respectively, while at least four PLS components were required to minimize the prediction error of Micro, Nano and Pico (Table 2).

Figure 4. Relationships between the HPLC-measured and PLS predicted concentrations (in mg m−3) of the 5 variables (Tchl a, DP, Micro, Nano and Pico) for the BOUSSOLE site data set (n=484). The I.1 ratio is shown as a solid line (black). Linear regressions between measured and predicted concentrations are shown as a dashed line (red). Statistical parameters of linear relations and Root Mean Square Error of Prediction (RMSEP, in mg m−3) are also reported.

Figure 5. The entire BOUSSOLE time series (January 2003-May 2011) of pigment concentrations as derived by HPLC pigment measurements (blue line) and a(450)/a(650)-PLS models (green line).