

# **Update on the BOUSSOLE activities**

V. Vellucci, B. Gentili, E. Leymarie, D. Antoine LOV – UPMC/CNRS

September 10<sup>th</sup> 2014 – MERIS QWG29

- Introduction
- Recent processing improvements
  - tilt above water
  - tilt under water
  - shading
  - impact of corrections
- QA/QC mesures
  - biofouling correction
  - intercalibration post deployment
  - intercalibration before deployment
  - radiometers characterization and calibration budget error
- Future directions

### Introduction : AOPs measurements at BOUSSOLE





- 1' records at 6Hz every 15' Since September 2003.
- Instrument rotation every 6 months.
- Operational objective : provide *in situ* data for vicarious calibration of satellite OC observations and validation of geophysical products  $\longrightarrow$  MERMAID.

- 7 multi-spectral Satlantic OCI-200 series (7  $\lambda$  VIS ;  $E_s$ ,  $E_d$ ,  $L_u$ ,  $E_u$ ).
- 5 hyper-spectral Satlantic HyperOCR series (150  $\lambda$  UV-NIR ; E<sub>s</sub>, E<sub>d</sub>, L<sub>u</sub>).
- 1 Satlantic PAR (400-700 nm ; PAR).



- Diffuse attenuation coefficients:  $K_d^{09}$ ;  $K_{Lu}^{49}$ ;  $K_{Eu}^{49}$
- Extrapolation to surface :  $L_w$  ;  $E_u(0^-)$  ;  $E_d(0^-)$
- OC products:  $R = E_u(0^-)/E_d(0^-)$ ;  $R_{rs} = L_w/E_s$ ;  $\rho_w = \pi \cdot R_{rs}$

 $K_{x} = -Ln[X(Z_{2})-X(Z_{1})]/(Z_{2}-Z_{1})$ X(0<sup>-</sup>) = X(Z\_{1})e^{Z\_{1}K\_{x}}; X(0<sup>-</sup>) = coef · X(0<sup>+</sup>)

#### Introduction : AOPs measurements at BOUSSOLE



http://www.obs-vlfr.fr/Boussole/

## Introduction

- Recent processing improvements
  - tilt above water
  - tilt under water
  - shading
  - impact of corrections
- QA/QC
  - biofouling correction
  - intercalibration post deployment
  - intercalibration before deployment
  - radiometers characterization and calibration budget error
- Summary
- Future directions

Processing improvement : tilt (cosine) correction for surface irradiance



• Corrected E<sub>s</sub> better follows the theoretical E<sub>s</sub> curve.

### Processing improvement : tilt (depth) correction for underwater radiometry



•  $K_d^{09}$  increases coherently with decreasing  $\Delta z$  and follows the Tilt variation.

### Processing improvement : buoy structure shading and self-shading of radiometers

- Backward 3D *Montecarlo* simulation replaces the Gordon & Ding (1992) correction scheme.
- Chl = 0.1, 0.5, 1.0, 5.0  $\mu$ g l<sup>-1</sup>.
- Azimuth angle from 0° to 360°, with 5° step.
- Zenith angle from 0° to 90°, with 5° step.
- 7 wavelengths (412, 443, 490, 510, 555, 670).



Shading coefficient matrix for  $L_u 4m$ , Chl = 0.1  $\mu g/l$ 

Shade Average 30-60 deg



Mean shading coefficient for  $L_u 4m$  at various Chl concentrations.





Processing improvement : buoy structure shading and self-shading of radiometers



•  $L_w$  shading correction is more important in the Red than in the Blue and well reflects the variations of the azimuth angle.

#### Processing improvements : combined tilt and shading corrections



• The historical data set has been reprocessed with tilt + shading correction.

•For R the impact of corrections is of the order of 5 % in the Blue/Green and 15 % in the Red.

- Introduction
- Recent processing improvements
  - tilt above water
  - tilt under water
  - shading
  - impact of corrections
- QA/QC
  - biofouling correction
  - intercalibration post deployment
  - intercalibration before deployment
  - radiometers characterization and calibration budget error
  - future directions
- Summary
- Future directions

## QA/QC : biofouling corrections



- Biofouling corrections are subjectively determined relying on objective criteria.
- Reanalysis of the entire dataset (only multi).

### QA/QC : intercalibration post deployment



- Establishment of a climatology of "good" radiometric measurements.
- Reanalysis of the entire dataset (only multi).
- Correction of "wrong" series based on the climatology (previously discarded).

# QA/QC : intercalibration before deployment (since 2011)







### QA/QC : intercalibration before deployment





- A bad example. 区
- Instrument sent back to factory for verification : collector replacement and recalibration.

### QA/QC : cosine response scan



- In this example, few  $\lambda$  out of specs and needed components replacement.
- Regular verifications of cosine response : tentative.

• WP4 of QA4EO : Development of Action Plan and Future Operational Cal/Val Strategy (ESA).

|            |         |                  | Operations performed at NPL |           |                                 |                                              |                 |                           |
|------------|---------|------------------|-----------------------------|-----------|---------------------------------|----------------------------------------------|-----------------|---------------------------|
| Inst. Type | Product | Nominal<br>depth | Cosine<br>response          | Linearity | Multi-<br>centre<br>calibration | Single-<br>centre<br>absolute<br>calibration | Stray-<br>light | Temperature<br>dependence |
| OCI-200    | Es      | 0+               |                             |           |                                 |                                              |                 |                           |
| OCI-200    | Ed      | 4                |                             |           |                                 |                                              |                 |                           |
| OCI-200    | Eu      | 4                |                             |           |                                 |                                              |                 |                           |
| OCR-200    | Lu      | 4                |                             |           |                                 |                                              |                 |                           |
| OCI-200    | Ed      | 9                |                             |           |                                 |                                              |                 |                           |
| OCI-200    | Eu      | 9                |                             |           |                                 |                                              |                 |                           |
| OCR-200    | Lu      | 9                |                             |           |                                 |                                              |                 |                           |
| HOCR-ICSA  | Es      | 0+               |                             |           |                                 |                                              |                 |                           |
| HOCR-ICSW  | Ed      | 4                |                             |           |                                 |                                              |                 |                           |
| HOCR-R08W  | Lu      | 4                |                             |           |                                 |                                              |                 |                           |
| HOCR-ICSW  | Ed      | 9                |                             |           |                                 |                                              |                 |                           |
| HOCR-R08W  | Lu      | 9                |                             |           |                                 |                                              |                 |                           |
| PAR        | PAR     | 0+               |                             |           |                                 |                                              |                 |                           |

Table V: List of the tests performed at NPL

In July 2013 two additional hyperspectral radiometers were sent to NPL (*hyper 422* and *hyper 277*) for additional tests such as stability, detector linearity and stray light.

- Uncertainty budget of radiometers absolute calibration (< 2%).
- Characterization of 1 set of buoy radiometers.
- Work to be continued :
  - to extend the uncertainty budget to the *in situ* and processing levels;
  - to characterize the 2<sup>nd</sup> set of radiometers.

- Improve the long-term operational traceability of the BOUSSOLE radiometers.
- Establish a revised uncertainty budget.
- Provide Flags associated to final products.
- Definitive transition to Hyperspectral radiometers.
- Intercalibration campaign with MOBY.
- Improve the buoy capabilities by:
  - 1. adding 2 Lu at 1m depth and/or
  - 2. establish a set of reference radiometer to inter-calibrate the two sets of radiometers.

# Thank you for attention

